RESUMEN
BACKGROUND: In this study, a new crosslinking agent (CA) containing whey protein, papin, glycerin, and epigallocatechin gallate (EGCG), was prepared. The effects of CA content (0, 10, 20, 30, and 40%, v/v) on food packaging properties, crystallinity, microstructure, and antioxidant properties of pectin-CA and chitosan-CA composite films were analyzed. The results of this research offer a theoretical basis for engineering improved films for food packing. RESULTS: Pectin-CA (30%) and chitosan-CA (40%) composite films showed the best light transmission, water retention, breathability, plasticity, and antioxidant activity. Scanning electron microscopy revealed that these composite films exhibited a uniform and homogeneous structure without obvious pores. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the amino acids and EGCG in CA were bonded to the film substrate (pectin/chitosan) via electrostatic interactions, hydrogen bonding, and covalent bonding, which led to an improvement in the film's properties. CONCLUSION: The CA has broad application prospects in food packaging as a cross-linking agent and antioxidant. © 2022 Society of Chemical Industry.
Asunto(s)
Quitosano , Quitosano/química , Antioxidantes/química , Pectinas/química , Difracción de Rayos X , Embalaje de Alimentos/métodos , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
BACKGROUND: This study developed an intelligent, pH-sensitive and amine-responsive colorimetric label based on chitosan, whey protein and thymol blue by controlling the pH value of the film-forming solution. The obtained label was used to monitor shrimp freshness in real time. The results of this study offer a new approach for developing highly intelligent biogenic labels for freshness monitoring during seafood preservation and processing. RESULTS: The pH 2.0 chitosan-whey protein-thymol blue (CWT-pH 2.0) label exhibited remarkable properties, including the highest tensile strength (5.90 MPa), excellent thermal stability, low water solubility (27.80%) and highly sensitive color responsiveness. The characterization techniques of scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy confirmed the effective immobilization of thymol blue within the film-forming matrix through hydrogen bonding. Furthermore, the CWT-pH 2.0 label demonstrated visible color changes in the presence of volatile ammonia concentrations ranging from 25 to 25 000 ppm. Consequently, the label successfully facilitated real-time monitoring of shrimp freshness during storage at 4 °C. Importantly, the release rate of thymol blue from the label in food simulants was minimal, measuring only 2.53%. CONCLUSION: The CWT-pH 2.0 label exhibits significant potential as a highly intelligent biogenic label for freshness monitoring in seafood preservation and processing. © 2023 Society of Chemical Industry.
Asunto(s)
Quitosano , Quitosano/química , Aminas , Proteína de Suero de Leche , Alimentos Marinos/análisis , Concentración de Iones de Hidrógeno , Antocianinas/química , Embalaje de Alimentos/métodosRESUMEN
To address the growing and urgent need for quick and accurate food spoilage detection systems as well as to reduce food resource wastage, recent research has focused on intelligent bio-labels using pH indicators. Accordingly, we developed a dual-channel intelligent label with colorimetric and fluorescent capabilities using black lycium anthocyanin (BLA) and 9,10-bis(2,2-dipyridylvinyl) anthracene (DSA4P) as colorimetric and fluorescent indicators within a composite film consisting of chitosan (Cs), whey protein (Wp), and sodium tripolyphosphate (STPP). The addition of STPP as a cross-linking agent significantly improved the hydrophobicity, mechanical properties, and thermal stability of the Cs/Wp composite films under low pH conditions. After the incorporation of BLA and DSA4P, the resulting dual-channel intelligent label (Cs/Wp/STPP/BLA/DSA4P) exhibited superior hydrophobicity, as indicated by a water contact angle of 78.03°. Additionally, it displayed enhanced mechanical properties, with a tensile strength (TS) of 3.04 MPa and an elongation at break (EAB) of 81.07 %, while maintaining a low transmittance of 28.48 % at 600 nm. After 25 days of burial in soil, the label was significantly degraded, which showcases its eco-friendly nature. Moreover, the label could visually detect color changes indicating volatile ammonia concentrations (25-25,000 ppm). The color of the label in daylight gradually shifted from brick-red to light-red, brownish-yellow, and finally light-green as the ammonia concentration increased. Correspondingly, its fluorescence transitioned from no fluorescence to green fluorescence with increasing ammonia concentration, gradually intensifying under 365-nm UV light. Furthermore, the label effectively monitored the freshness of shrimp stored at temperatures of 4 °C, 25 °C, and - 18 °C. Thus, the label developed in this study exhibits significant potential for enhancing food safety monitoring.
Asunto(s)
Quitosano , Lycium , Polifosfatos , Animales , Amoníaco , Colorimetría , Proteína de Suero de Leche , Alimentos Marinos , Colorantes , Antocianinas , Crustáceos , Concentración de Iones de Hidrógeno , Embalaje de AlimentosRESUMEN
In this study, the comparison effects of ultrasound-assisted immersion freezing (UIF) at different ultrasonic power, immersion freezing (IF), and air freezing (AF) on the protein thermal stability, protein structure, and physicochemical properties of adductor muscle of scallop (Argopecten irradians) (AMS) during frozen storage were investigated. Principal component analysis and the Taylor diagram were used to comprehensively analyze all the indicators tested. The results showed that the UIF at 150 W (UIF-150) treatment was the most effective way to delay the quality deterioration of AMS during 90-day frozen storage. This was mainly because, compared to AF and IF treatments, UIF-150 treatment more effectively minimized the changes in the primary, secondary and tertiary structures of myofibrillar proteins, and it preserved the protein thermal stability of AMS by producing small and regular ice crystals in the AMS tissue during the freezing process. Moreover, the results of physicochemical properties indicated that UIF-150 treatment significantly inhibited the fat oxidation and microbiological activities of frozen AMS, and it finally maintained the microstructure and texture of AMS during frozen storage. Overall, UIF-150 has potential industrial application prospects in the rapid freezing and quality preservation of scallops.