Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108701

RESUMEN

Compared to other techniques, RNA sequencing (RNA-Seq) has the advantage of having details of the expression abundance of all transcripts in a single run. In this study, we used RNA-Seq to monitor the maturity and dynamic characteristics of in vitro hepatocyte cultures. Hepatocytes, including mature hepatocytes and small hepatocytes, were analyzed in vitro using RNA-Seq and quantitative polymerase chain reaction (qPCR). The results demonstrated that the gene expression profiles measured by RNA-Seq showed a similar trend to the expression profiles measured by qPCR, and can be used to infer the success of in vitro hepatocyte cultures. The results of the differential analysis, which compared mature hepatocytes against small hepatocytes, revealed 836 downregulated and 137 upregulated genes. In addition, the success of the hepatocyte cultures could be explained by the gene list screened from the adopted gene enrichment test. In summary, we demonstrated that RNA-Seq could become an effective method for monitoring the whole transcriptome of hepatocyte cultures and provide a more comprehensive list of factors related to the differentiation of small hepatocytes into mature hepatocytes. This monitoring system not only shows high potential in medical applications but may also be a novel method for the clinical diagnosis of liver-related diseases.


Asunto(s)
Hepatocitos , Transcriptoma , Ratas , Animales , RNA-Seq , Hepatocitos/metabolismo , Análisis de Secuencia de ARN , Células Cultivadas , Hígado
2.
Sensors (Basel) ; 21(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34883817

RESUMEN

Previously published photoplethysmography-(PPG) based non-invasive blood glucose (NIBG) measurements have not yet been validated over 500 subjects. As illustrated in this work, we increased the number subjects recruited to 2538 and found that the prediction accuracy (the ratio in zone A of Clarke's error grid) reduced to undesirable 60.6%. We suspect the low prediction accuracy induced by larger sample size might arise from the physiological diversity of subjects, and one possibility is that the diversity might originate from medication. Therefore, we split the subjects into two cohorts for deep learning: with and without medication (1682 and 856 recruited subjects, respectively). In comparison, the cohort training for subjects without any medication had approximately 30% higher prediction accuracy over the cohort training for those with medication. Furthermore, by adding quarterly (every 3 months) measured glycohemoglobin (HbA1c), we were able to significantly boost the prediction accuracy by approximately 10%. For subjects without medication, the best performing model with quarterly measured HbA1c achieved 94.3% prediction accuracy, RMSE of 12.4 mg/dL, MAE of 8.9 mg/dL, and MAPE of 0.08, which demonstrates a very promising solution for NIBG prediction via deep learning. Regarding subjects with medication, a personalized model could be a viable means of further investigation.


Asunto(s)
Glucemia , Aprendizaje Profundo , Estudios de Cohortes , Hemoglobina Glucada , Humanos , Fotopletismografía
3.
Diagnostics (Basel) ; 12(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35741114

RESUMEN

Atrial fibrillation (AFib) is a common type of arrhythmia that is often clinically asymptomatic, which increases the risk of stroke significantly but can be prevented with anticoagulation. The photoplethysmogram (PPG) has recently attracted a lot of attention as a surrogate for electrocardiography (ECG) on atrial fibrillation (AFib) detection, with its out-of-hospital usability for rapid screening or long-term monitoring. Previous studies on AFib detection via PPG signals have achieved good results, but were short of intuitive criteria like ECG p-wave absence or not, especially while using interval randomness to detect AFib suffering from conjunction with premature contractions (PAC/PVC). In this study, we newly developed a PPG flux (pulse amplitude) and interval plots-based methodology, simply comprising an irregularity index threshold of 20 and regression error threshold of 0.06 for the precise automatic detection of AFib. The proposed method with automated detection on AFib shows a combined sensitivity, specificity, accuracy, and precision of 1, 0.995, 0.995, and 0.952 across the 460 samples. Furthermore, the flux-interval plot configuration also acts as a very intuitive tool for visual reassessment to confirm the automatic detection of AFib by its distinctive plot pattern compared to other cardiac rhythms. The study demonstrated that exclusive 2 false-positive cases could be corrected after the reassessment. With the methodology's background theory well established, the detection process automated and visualized, and the PPG sensors already extensively used, this technology is very user-friendly and convincing for promoted to in-house AFib diagnostics.

4.
Sci Rep ; 12(1): 6506, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444228

RESUMEN

Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ([Formula: see text]) of 0.81, an accuracy score ([Formula: see text]) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on [Formula: see text] for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable.


Asunto(s)
Glucemia , Aprendizaje Profundo , Algoritmos , Humanos , Redes Neurales de la Computación , Fotopletismografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA