Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805963

RESUMEN

The presence of liver cancer stem cells (LCSCs) is one of the reasons for the treatment failure of hepatocellular carcinoma (HCC). For LCSCs, one of their prominent features is metabolism plasticity, which depends on transporters and ion channels to exchange metabolites and ions. The K+ channel protein KCNN4 (Potassium Calcium-Activated Channel Subfamily N Member 4) has been reported to promote cell metabolism and malignant progression of HCCs, but its influence on LCSC stemness has remained unclear. Here, we demonstrated that KCNN4 was highly expressed in L-CSCs by RT-PCR and Western blot. Then, we illustrated that KCNN4 promoted the stemness of HC-C cells by CD133+CD44+ LCSC subpopulation ratio analysis, in vitro stemness transcription factor detection, and sphere formation assay, as well as in vivo orthotopic liver tumor formation and limiting dilution tumorigenesis assays. We also showed that KCNN4 enhanced the glucose metabolism in LCSCs by metabolic enzyme detections and seahorse analysis, and the KCNN4-promoted increase in LCSC ratios was abolished by glycolysis inhibitor 2-DG or OXPHOS inhibitor oligomycin. Collectively, our results suggested that KCNN4 promoted LCSC stemness via enhancing glucose metabolism, and that KCNN4 would be a potential molecular target for eliminating LCSCs in HCC.


Asunto(s)
Carcinoma Hepatocelular , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Neoplasias Hepáticas , Células Madre Neoplásicas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Glucosa/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
2.
J Cell Mol Med ; 25(12): 5782-5798, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33982381

RESUMEN

Sepsis is a life-threatening organ dysfunction syndrome, and liver is a susceptible target organ in sepsis, because the activation of inflammatory pathways contributes to septic liver injury. Oxidative stress has been documented to participate in septic liver injury, because it not only directly induces oxidative genotoxicity, but also exacerbates inflammatory pathways to potentiate damage of liver. Therefore, to ameliorate oxidative stress is promising for protecting liver in sepsis. Wogonin is the compound extracted from the medicinal plant Scutellaria baicalensis Geogi and was found to exert therapeutic effects in multiple inflammatory diseases via alleviation of oxidative stress. However, whether wogonin is able to mitigate septic liver injury remains unknown. Herein, we firstly proved that wogonin treatment could improve survival of mice with lipopolysaccharide (LPS)- or caecal ligation and puncture (CLP)-induced sepsis, together with restoration of reduced body temperature and respiratory rate, and suppression of several pro-inflammatory cytokines in circulation. Then, we found that wogonin effectively alleviated liver injury via potentiation of the anti-oxidative capacity. To be specific, wogonin activated Nrf2 thereby promoting expressions of anti-oxidative enzymes including NQO-1, GST, HO-1, SOD1 and SOD2 in hepatocytes. Moreover, wogonin-induced Nrf2 activation could suppress NF-κB-regulated up-regulation of pro-inflammatory cytokines. Ultimately, we provided in vivo evidence that wogonin activated Nrf2 signalling, potentiated anti-oxidative enzymes and inhibited NF-κB-regulated pro-inflammatory signalling. Taken together, this study demonstrates that wogonin can be the potential therapeutic agent for alleviating liver injury in sepsis by simultaneously ameliorating oxidative stress and inflammatory response through the activation of Nrf2.


Asunto(s)
Modelos Animales de Enfermedad , Flavanonas/farmacología , Fallo Hepático Agudo/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Sepsis/complicaciones , Animales , Lipopolisacáridos/toxicidad , Fallo Hepático Agudo/etiología , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Transducción de Señal
3.
Int J Mol Sci ; 18(1)2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28117675

RESUMEN

Drug resistance remains a major clinical obstacle to successful treatment of cancer. As posttranslational modification is becoming widely recognized to affect the function of oncoproteins, targeting specific posttranslational protein modification provides an attractive strategy for anticancer drug development. CD147 is a transmembrane glycoprotein contributing to chemo-resistance of cancer cells in a variety of human malignancies. Ubiquitination is an important posttranslational modification mediating protein degradation. Degradation of oncoproteins, CD147 included, emerges as an attractive alternative for tumor inhibition. However, the ubiquitination of CD147 remains elusive. Here in this study, we found that deletion of the CD147 intracellular domain (CD147-ICD) prolonged the half-life of CD147 in HEK293T cells, and we identified that CD147-ICD interacts with FBXO22 using mass spectrometry and Western blot. Then, we demonstrated that FBXO22 mediates the polyubiquitination and degradation of CD147 by recognizing CD147-ICD. While knocking down of FBXO22 prolonged the half-life of CD147 in HEK293T cells, we found that FBXO22 regulates CD147 protein turnover in SMMC-7721, Huh-7 and A549 cells. Moreover, we found that the low level of FBXO22 contributes to the accumulation of CD147 and thereafter the cisplatin resistance of A549/DDP cells. To conclude, our study demonstrated that FBXO22 mediated the polyubiquitination and degradation of CD147 by interacting with CD147-ICD, and CD147 polyubiquitination by FBXO22 reversed cisplatin resistance of tumor cells.


Asunto(s)
Basigina/metabolismo , Cisplatino/farmacología , Proteínas F-Box/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Ubiquitinación , Células A549 , Antineoplásicos/farmacología , Basigina/genética , Sitios de Unión/genética , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteínas F-Box/genética , Eliminación de Gen , Células HEK293 , Humanos , Espectrometría de Masas , Microscopía Confocal , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Poliubiquitina/metabolismo , Unión Proteica , Proteolisis , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/genética
4.
Int J Mol Sci ; 17(11)2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27834933

RESUMEN

Hepatocellular carcinoma (HCC) is currently the third most common cause of cancer-related death in the Asia-Pacific region. Our previous work showed that knockdown of CD98 significantly inhibits malignant HCC cell phenotypes in vitro and in vivo. The level of CD98 in the membrane is tightly regulated to mediate complex processes associated with cell-cell communication and intracellular signaling. In addition, the intracellular domain of CD98 (CD98-ICD) seems to be of vital importance for recycling CD98 to the membrane after it is endocytosed. The intracellular and transmembrane domains of CD98 associate with ß-integrins (primarily ß1 but also ß3), and this association is essential for CD98 mediation of integrin-like signaling and complements dominant suppression of ß1-integrin. We speculated that isolated CD98-ICD would similarly suppress ß1-integrin activation and inhibit the malignant behaviors of cancer cells. In particular, the exact role of CD98-ICD has not been studied independently in HCC. In this study, we found that ectopic expression of CD98-ICD inhibited the malignant phenotypes of HCC cells, and the mechanism possibly involves ß1-integrin suppression. Moreover, the expression levels of CD98, ß1-integrin-A (the activated form of ß1-integrin) and Ki-67 were significantly increased in HCC tissues relative to those of normal liver tissues. Therefore, our preliminary study indicates that ectopic CD98-ICD has an inhibitory role in the malignant development of HCC, and shows that CD98-ICD acts as a dominant negative mutant of CD98 that attenuates ß1-integrin activation. CD98-ICD may emerge as a promising candidate for antitumor treatment.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteína-1 Reguladora de Fusión/metabolismo , Integrina beta1/metabolismo , Neoplasias Hepáticas/metabolismo , Animales , Sitios de Unión/genética , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Citometría de Flujo , Proteína-1 Reguladora de Fusión/genética , Humanos , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Confocal , Transfección , Trasplante Heterólogo , Carga Tumoral
5.
J Pineal Res ; 59(2): 230-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26094939

RESUMEN

Sepsis is a systemic inflammatory response to infection that causes severe neurological complications. Previous studies have suggested that melatonin is protective during sepsis. Additionally, silent information regulator 1 (SIRT1) was reported to be beneficial in sepsis. However, the role of SIRT1 signaling in the protective effect of melatonin against septic encephalopathy remains unclear. This study aimed to investigate the role of SIRT1 in the protective effect of melatonin. EX527, a SIRT1 inhibitor, was used to reveal the role of SIRT1 in melatonin's action. Cecal ligation and puncture or sham operation was performed in male C57BL/6J mice. Melatonin was administrated intraperitoneally (30 mg/kg). The survival rate of mice was recorded for the 7-day period following the sham or CLP operation. The blood-brain barrier (BBB) integrity, brain water content, levels of inflammatory cytokines (TNF-α, IL-1ß, and HMGB1), and the level of oxidative stress (superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA)) and apoptosis were assessed. The expression of SIRT1, Ac-FoxO1, Ac-p53, Ac-NF-κB, Bcl-2, and Bax was detected by Western blot. The results suggested that melatonin improved survival rate, attenuated brain edema and neuronal apoptosis, and preserved BBB integrity. Melatonin decreased the production of TNF-α, IL-1ß, and HMGB1. Melatonin increased the activity of SOD and CAT and decreased the MDA production. Additionally, melatonin upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FoxO1, Ac-p53, Ac-NF-κB, and Bax. However, the protective effects of melatonin were abolished by EX527. In conclusion, our results demonstrate that melatonin attenuates sepsis-induced brain injury via SIRT1 signaling activation.


Asunto(s)
Apoptosis/efectos de los fármacos , Lesiones Encefálicas/enzimología , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Sepsis/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Animales , Lesiones Encefálicas/patología , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/enzimología , Inflamación/patología , Masculino , Ratones , Sepsis/patología
6.
J Pineal Res ; 58(1): 61-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25401748

RESUMEN

Silent information regulator 1 (SIRT1), a type of histone deacetylase, is a highly effective therapeutic target for protection against ischemia reperfusion (IR) injury (IRI). Previous studies showed that melatonin preserves SIRT1 expression in neuronal cells of newborn rats after hypoxia-ischemia. However, the definite role of SIRT1 in the protective effect of melatonin against cerebral IRI in adult has not been explored. In this study, the brain of adult mice was subjected to IRI. Prior to this procedure, the mice were given intraperitoneal with or without the SIRT1 inhibitor, EX527. Melatonin conferred a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema, and increased neurological scores. The melatonin-induced upregulation of SIRT1 was also associated with an increase in the anti-apoptotic factor, Bcl2, and a reduction in the pro-apoptotic factor Bax. Moreover, melatonin resulted in a well-preserved mitochondrial membrane potential, mitochondrial Complex I activity, and mitochondrial cytochrome c level while it reduced cytosolic cytochrome c level. However, the melatonin-elevated mitochondrial function was reversed by EX527 treatment. In summary, our results demonstrate that melatonin treatment attenuates cerebral IRI by reducing IR-induced mitochondrial dysfunction through the activation of SIRT1 signaling.


Asunto(s)
Antioxidantes/farmacología , Isquemia Encefálica/tratamiento farmacológico , Melatonina/farmacología , Mitocondrias/metabolismo , Sirtuina 1/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Carbazoles/farmacología , Muerte Celular/efectos de los fármacos , Masculino , Ratones , Mitocondrias/patología , Ratas , Transducción de Señal/efectos de los fármacos , Sirtuina 1/antagonistas & inhibidores , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
7.
Breast Cancer Res Treat ; 148(2): 423-36, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25348432

RESUMEN

GINS2, a subunit of the GINS complex, is overexpressed in lung adenocarcinoma and metastatic breast tumor; however, its prognostic power and possible molecular mechanisms in breast cancer (BC) remain unclear. In this study, we aimed to explore the function of GINS2 in BC. The association between GINS2 transcript level and the clinical outcome of BC patients were estimated using Kaplan-Meier plots, multivariate cox regression analysis, forest plots, and receiver operating characteristics curves. Gene set enrichment analysis (GSEA) was performed to explore the mechanisms underlying the effects of the GINS2 transcript. High GINS2 transcript level was correlated with poor relapse free survival (log-rank P ≤ 0.001 in six cohorts; forest plot: total n = 1,420, total RR = 1.72, 95% CI 1.45-2.03; multivariate cox regression analysis: n = 906, HR 2.36, 95% CI 1.88-2.97), and distant metastasis free survival (log-rank P < 0.01 in 3 cohorts; forest plot: total n = 691, total RR 1.91, 95% CI 1.36-2.67; multivariate cox regression analysis: n = 442, HR 2.43, 95% CI 1.70-3.47). BC patients with higher GINS2 transcript levels showed poorer tamoxifen efficacy in a dose-dependent manner. GINS2 expression was significantly downregulated under mutated p53-depleted condition in MDA-468 and MDA-MB-231 cells, upregulated in mammary cancer stem cells (MaCSCs) (P = 0.003), and correlated with upregulated genes in mammary stem cells (GSEA: P < 0.01). Our study, for the first time, demonstrates that GINS2 is an independent prognostic marker and is associated with lung metastasis, histological grade, and endocrine therapy resistance in BC patients, which may attribute to mutant p53 and MaCSCs.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Proteínas Cromosómicas no Histona/genética , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/genética , Células Madre Neoplásicas/metabolismo , Tamoxifeno/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/secundario , Metástasis Linfática , Persona de Mediana Edad , Mutación/genética , Clasificación del Tumor , Estadificación de Neoplasias , Células Madre Neoplásicas/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , ARN Mensajero/genética , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Tasa de Supervivencia , Proteína p53 Supresora de Tumor/genética
8.
J Transl Med ; 12: 190, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24996644

RESUMEN

BACKGROUND: As a surface glycoprotein, CD147 is capable of stimulating the production of matrix metalloproteinases (MMPs) from neighboring fibroblasts. The aim of the present study is to explore the role of soluble CD147 on MMPs secretion from hepatocellular carcinoma (HCC) cells, and to investigate the diagnostic value of serum soluble CD147 in the HCC detection. METHODS: We identified the form of soluble CD147 in cell culture supernate of HCC cells and serum of patients with HCC, and explored the role of soluble CD147 on MMPs secretion. Serum CD147 levels were detected by the enzyme-linked immunosorbent assay, and the value of soluble CD147 as a marker in HCC detection was analyzed. RESULTS: Full length soluble CD147 was presented in the culture medium of HCC cells and serum of patients with HCC. The extracellular domain of soluble CD147 promoted the expression of CD147 and MMP-2 from HCC cells. Knockdown of CD147 markedly diminished the up-regulation of CD147 and MMP-2 which induced by soluble CD147. Soluble CD147 activated ERK, FAK, and PI3K/Akt pathways, leading to the up-regulation of MMP-2. The level of soluble CD147 in serum of patients with HCC was significantly elevated compared with healthy individuals (P < 0.001). Soluble CD147 levels were found to be associated with HCC tumor size (P = 0.007) and Child-Pugh grade (P = 0.007). Moreover, soluble CD147 showed a better performance in distinguishing HCC compared with alpha-fetoprotein. CONCLUSIONS: The extracellular domain of soluble CD147 enhances the secretion of MMP-2 from HCC cells, requiring the cooperation of membrane CD147 and activation of ERK, FAK, and PI3K/Akt signaling. The measurement of soluble CD147 may offer a useful approach in diagnosis of HCC.


Asunto(s)
Basigina/metabolismo , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/enzimología , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Adulto , Anciano , Basigina/sangre , Basigina/química , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Membrana Celular/metabolismo , Medios de Cultivo Condicionados/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Curva ROC , Transducción de Señal , Solubilidad , Regulación hacia Arriba , alfa-Fetoproteínas/metabolismo
9.
Food Chem ; 460(Pt 1): 140493, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39053284

RESUMEN

In this study, the structural characterization, physicochemical properties, antioxidant, hypolipidemic, and hypoglycemic potentials of polysaccharide components (BLP-1, BLP-2, and BLP-3) purified from blueberry leaf polysaccharides (BLP) were investigated. Ion chromatography results showed that BLP-1, BLP-2, and BLP-3 contained rhamnose, arabinose, galactose, glucose, and glucuronic acid. In contrast to BLP-1, BLP-2 and BLP-3 included galacturonic acid. The methylation analysis results indicated that the backbones of BLP-1, BLP-2, and BLP-3 were mainly composed of glycosidic linkages of arabinose, galactose, and glucose, which was consistent with the results of the previously determined monosaccharide composition. The in-vitro antioxidant results showed that BLP-1, BLP-2, and BLP-3 possessed antioxidant activity with the highest scavenging of -OH radicals. Furthermore, BLP-1, BLP-2, and BLP-3 showed high bile acid-binding activity and α-amylase inhibitory activity, suggesting that they have the potentials of hypolipidemic and hypoglycemic. This study provides a reference for the utilization of blueberry leaf resources.

10.
Zhonghua Yan Ke Za Zhi ; 49(8): 729-35, 2013 Aug.
Artículo en Zh | MEDLINE | ID: mdl-24246813

RESUMEN

OBJECTIVE: To study the effects of premature birth on the development of rat retinal vasculature. METHODS: Experimental study. Sixty pregnant Sprague-Dawley rats were divided into four groups: bacterial lipopolysaccharide-induced preterm group (LPS group), RU-486 induced preterm group (RP group), cesarean section induced preterm group (CP group), and the normal delivery rats as the control group. The weight of rats from each group was recorded until postnatal day 21. On postnatal day 4, 7, 10 and 14 (P4, P7, P10 and P14), the retina of right eye was dissected and whole-mounted. Each premature group was divided into two subgroups based on the number of rats in each litter, the small subgroup (6-8 rats per litter, group 1) and the large subgroup (14-18 rats per litter, group 2). The development of retinal vascularization process was observed on P4, P7 and P10 (n = 6).Independent t test, one-way ANOVA and LSD-t test were used to analyzed the results. RESULTS: The weight of premature rats in LPS, CP and RP groups was significantly lower than that in the normal group within postnatal 21 days (LSD-t test: all P < 0.05). On the P4 and P7 in LPS group, the proportions of retinal superficial vascularized area of newborn rats [(0.47 ± 0.02) % ,(0.63 ± 0.04)%] were less than that in the normal group [(0.57 ± 0.04) % , (0.74 ± 0.05)%] (t4 d = 6.427, P 4 d = 0.000;t7 d = 5.111, P 7 d = 0.000). On the P4 and P7 in RP group, this proportions [(0.49 ± 0.04) %,(0.65 ± 0.04)%] were less than that in the normal group [(0.57 ± 0.04) %, (0.74 ± 0.05)%] (t4 d = 4.469, P 4 d = 0.000;t7 d = 2.491, P 7 d = 0.022). On P4, P7 and P10 in CP group, this proportions [(0.49 ± 0.05) %, (0.61 ± 0.05) %, (0.94 ± 0.03)%] were also less than that in the normal group[ (0.57 ± 0.04) %, (0.74 ± 0.05) %, (0.97 ± 0.02)%] (t4 d = 4.044, P 4 d = 0.001;t7 d = 6.011, P 7 d = 0.000; t 10 d = 2.331, P 10 d = 0.030). Retinal superficial vascularization completed on P14 in all groups. On the P4 and P7 in LPS group, the proportion of retinal vascularized area of group 2 [(0.44 ± 0.02)%, (0.60 ± 0.03)%] were less than that of group 1 [(0.53 ± 0.04)%, (0.74 ± 0.03)%] (t4 d = 3.852, P 4 d = 0.008; t7 d = 5.630, P 7 d = 0.001). On the P4 and P7 in CP group, this proportion in group 2 [(0.43 ± 0.02)%, (0.64 ± 0.03)%] were less than that of group 1 [ (0.54 ± 0.03)%, (0.76 ± 0.02)%] (t4 d = 4.695, P 4 d = 0.003; t7 d = 6.025, P 7 d = 0.001). On P4 in RP group, the proportions of group 2 [ (0.44 ± 0.01)%] was less than that of group 1 [ (0.54 ± 0.04)%] (t4 d = 5.000, P 4 d = 0.002). CONCLUSIONS: The premature rats have lower weight and much slower rate of early retinal vascularization, as compared with the normal rats. Furthermore, in the premature rats, the proportion of retinal vascularization in larger litters is less than that in smaller litters. These results indicate that premature birth and larger litter size have effects on the development of rat retinal vasculature.


Asunto(s)
Neovascularización Retiniana , Vasos Retinianos/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Femenino , Embarazo , Ratas , Ratas Sprague-Dawley
11.
J Pharm Anal ; 13(10): 1135-1152, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38024852

RESUMEN

Morphine is a frequently used analgesic that activates the mu-opioid receptor (MOR), which has prominent side effects of tolerance. Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the development of morphine tolerance, currently, there is no effective therapy to treat morphine tolerance. In the current study, we aimed to develop a monoclonal antibody (mAb) precisely targeting MOR and to determine its therapeutic efficacy on morphine tolerance and the underlying molecular mechanisms. We successfully prepared a mAb targeting MOR, named 3A5C7, by hybridoma technique using a strategy of deoxyribonucleic acid immunization combined with cell immunization, and identified it as an immunoglobulin G mAb with high specificity and affinity for MOR and binding ability to antigens with spatial conformation. Treatment of two cell lines, HEK293T and SH-SY5Y, with 3A5C7 enhanced morphine-induced MOR endocytosis via a G protein-coupled receptor kinase 2 (GRK2)/ß-arrestin2-dependent mechanism, as demonstrated by immunofluorescence staining, flow cytometry, Western blotting, coimmunoprecipitation, and small interfering ribonucleic acid (siRNA)-based knockdown. This mAb also allowed MOR recycling from cytoplasm to plasma membrane and attenuated morphine-induced phosphorylation of MOR. We established an in vitro morphine tolerance model using differentiated SH-SY5Y cells induced by retinoic acid. Western blot, enzyme-linked immunosorbent assays, and siRNA-based knockdown revealed that 3A5C7 mAb diminished hyperactivation of adenylate cyclase, the in vitro biomarker of morphine tolerance, via the GRK2/ß-arrestin2 pathway. Furthermore, in vivo hotplate test demonstrated that chronic intrathecal administration of 3A5C7 significantly alleviated morphine tolerance in mice, and withdrawal jumping test revealed that both chronic and acute 3A5C7 intrathecal administration attenuated morphine dependence. Finally, intrathecal electroporation of silencing short hairpin RNA illustrated that the in vivo anti-tolerance and anti-dependence efficacy of 3A5C7 was mediated by enhanced morphine-induced MOR endocytosis via GRK2/ß-arrestin2 pathway. Collectively, our study provided a therapeutic mAb, 3A5C7, targeting MOR to treat morphine tolerance, mediated by enhancing morphine-induced MOR endocytosis. The mAb 3A5C7 demonstrates promising translational value to treat clinical morphine tolerance.

12.
Science ; 379(6637): eabg2482, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927018

RESUMEN

Autoimmune diseases such as ankylosing spondylitis (AS) can be driven by emerging neoantigens that disrupt immune tolerance. Here, we developed a workflow to profile posttranslational modifications involved in neoantigen formation. Using mass spectrometry, we identified a panel of cysteine residues differentially modified by carboxyethylation that required 3-hydroxypropionic acid to generate neoantigens in patients with AS. The lysosomal degradation of integrin αIIb [ITGA2B (CD41)] carboxyethylated at Cys96 (ITGA2B-ceC96) generated carboxyethylated peptides that were presented by HLA-DRB1*04 to stimulate CD4+ T cell responses and induce autoantibody production. Immunization of HLA-DR4 transgenic mice with the ITGA2B-ceC96 peptide promoted colitis and vertebral bone erosion. Thus, metabolite-induced cysteine carboxyethylation can give rise to pathogenic neoantigens that lead to autoreactive CD4+ T cell responses and autoantibody production in autoimmune diseases.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Cisteína , Cadenas HLA-DRB1 , Integrina alfa2 , Procesamiento Proteico-Postraduccional , Espondilitis Anquilosante , Animales , Ratones , Autoanticuerpos/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Autoinmunidad/genética , Autoinmunidad/inmunología , Cisteína/metabolismo , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/metabolismo , Ratones Transgénicos , Integrina alfa2/metabolismo , Microbioma Gastrointestinal , Humanos , Espondilitis Anquilosante/genética , Espondilitis Anquilosante/metabolismo
13.
MedComm (2020) ; 3(3): e148, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35774845

RESUMEN

Opioid abuse and addiction have become a global pandemic, posing tremendous health and social burdens. The rewarding effects and the occurrence of withdrawal symptoms are the two mainstays of opioid addiction. Mu-opioid receptors (MORs), a member of opioid receptors, play important roles in opioid addiction, mediating both the rewarding effects of opioids and opioid withdrawal syndrome (OWS). The underlying mechanism of MOR-mediated opioid rewarding effects and withdrawal syndrome is of vital importance to understand the nature of opioid addiction and also provides theoretical basis for targeting MORs to treat drug addiction. In this review, we first briefly introduce the basic concepts of MORs, including their structure, distribution in the nervous system, endogenous ligands, and functional characteristics. We focused on the brain circuitry and molecular mechanism of MORs-mediated opioid reward and withdrawal. The neuroanatomical and functional elements of the neural circuitry of the reward system underlying opioid addiction were thoroughly discussed, and the roles of MOR within the reward circuitry were also elaborated. Furthermore, we interrogated the roles of MORs in OWS, along with the structural basis and molecular adaptions of MORs-mediated withdrawal syndrome. Finally, current treatment strategies for opioid addiction targeting MORs were also presented.

14.
MedComm (2020) ; 3(2): e132, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35548710

RESUMEN

Systemic inflammatory response syndrome (SIRS) is characterized by dysregulated cytokine release, immune responses and is associated with organ dysfunction. IL-6R blockade indicates promising therapeutic effects in cytokine release storm but still remains unknown in SIRS. To address the issue, we generated the human il-6r knock-in mice and a defined epitope murine anti-human membrane-bound IL-6R (mIL-6R) mAb named h-mIL-6R mAb. We found that the h-mIL-6R and the commercial IL-6R mAb Tocilizumab significantly improved the survival rate, reduced the levels of TNF-α, IL-6, IL-1ß, IFN-γ, transaminases and blood urea nitrogen of LPS-induced SIRS mice. Besides, the h-mIL-6R mAb could also dramatically reduce the levels of inflammatory cytokines in LPS-treated THP-1 cells in vitro. RNA-seq analysis indicated that the h-mIL-6R mAb could regulate LPS-induced activation of NF-κB/Ccl2 and NOD-like receptor signaling pathways. Furthermore, we found that the h-mIL-6R mAb could forwardly inhibit Ccl2 expression and NLRP3-mediated pyroptosis by suppressing NF-κB in combination with the NF-κB inhibitor. Collectively, mIL-6R mAbs suppressed NF-κB/Ccl2 signaling and inflammasome activation. IL-6R mAbs are potential alternative therapeutics for suppressing excessive cytokine release, over-activated inflammatory responses and alleviating organ injuries in SIRS.

15.
Transgenic Res ; 20(2): 321-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20549347

RESUMEN

Biologically active recombinant monoclonal antibodies (mAbs) and their derivatives are in demand as therapeutic agents against a variety of cancers. The antibodies are generally produced by mammalian cell culture, but their production in the milk of transgenic animals would help meet the increasing demand. The mouse-human chimeric antibody chHAb18 has been proven to inhibit the invasion and metastasis of human hepatocellular carcinoma (HCC) cells by recognizing the HAb18G/CD147 molecule that is highly expressed on the surface of HCC tissue. Here, we report that transgenic mice generated by co-microinjection of two cassettes encoding the heavy and light chain genes of chHAb18 could highly express functional chHAb18 in their mammary glands. The expression level range of 1.1-7.4 mg ml(-1) was independent of transgenic copy number. Immunoassays demonstrated the ability and specificity of chHAb18 to bind purified antigen (i.e., HAb18G) or HCC cells. Recombinant chHAb18 from transgenic milk exhibited affinity almost equal to chHAb18 derived from CHO cells, and was 68% of that of the parental murine antibody, HAb18. In light of successful clinical application of HAb18, the chHAb18 expressed in mammary glands of transgenic mice constitutes an important step towards high-yield and scaled-up production of this antibody.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/biosíntesis , Basigina/inmunología , Carcinoma Hepatocelular/inmunología , Glándulas Mamarias Animales/metabolismo , Leche/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Animales , Anticuerpos Monoclonales/biosíntesis , Antineoplásicos/inmunología , Antineoplásicos/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Hepáticas/inmunología , Ratones , Ratones Transgénicos , Leche/química , Leche/inmunología , Proteínas Recombinantes de Fusión/genética
16.
RSC Adv ; 11(42): 26408-26414, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35479432

RESUMEN

The rapid development of flexible wearable electronics arouses huge demand for low-temperature sintering metal inks applied to temperature-sensitive substrates. The high sintering temperature and easy oxidation limited the application of Cu-based pastes. A two-step method involving liquid co-reduction and heat ripening was developed to synthesize Cu@Sn-Bi core-shell particles. The thickness of Sn-Bi shells can be flexibly adjusted via changing the mass ratio of Cu to Sn-Bi. The volume resistivity of printed circuits using Cu@Sn-Bi pastes solidified at 200 °C was as low as 481 µΩ cm, which increased by 11.8% after an aging process at 190 °C for 6 h. The outstanding stability in a harsh environment would attribute to the effective protection of Sn-Bi alloy shells. This work suggests a new pathway toward the low-temperature bonding and anti-oxidation of Cu particles as conductive fillers, which can be widely applied to the additive manufacturing of flexible wearable electronics.

17.
Am J Transl Res ; 13(5): 3967-3986, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149993

RESUMEN

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths. Previous studies have suggested that mu-opioid receptor (MOR), a member of the opioid receptor family, is involved in the pathogenesis of HCC. However, the mechanism by which MOR regulates the biological behavior of HCC is still poorly understood. To address this problem, in this study, we investigated the role of MOR in the proliferation of HCC cell lines and the underlying mechanism. First, RT-PCR, western-blot and immunohistochemistry revealed higher expression of MOR in HCC cells and tissue than in non-tumor cells or adjacent tissue, and elevated expression of MOR was associated with jeopardized survival of HCC patients, as demonstrated by bioinformatic databases. Knockdown of MOR by specific siRNA attenuated the proliferation and migration of HCC cells and this effect could be reversed by rescue experiments, confirming the essential role of MOR in the proliferation of HCC. Moreover, results of colony formation assay, CCK8 test, flow cytometry and western blot suggested that a monoclonal antibody (mAb) specifically against MOR could inhibit proliferation of HepG2 and Huh7 cells via the MOR-CD147-p53-MAPK pathway, and the interaction between MOR and CD147 was verified by immunofluorescence colocalization and co-IP analysis. The mAb against MOR also enhanced the cisplatin-induced apoptosis of HCC cells by downregulating p-ERK, Bcl-2 and upregulating Bax. Taken together, these results suggest that MOR could regulate the proliferation of HCC cells in a CD147-p53-MAPK dependent manner. MOR possesses the potential to be a therapeutic target to treat HCC.

18.
Front Immunol ; 12: 731329, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069521

RESUMEN

Recently, immunotherapy targeting tumor-infiltrating lymphocytes (TILs) has emerged as a critical and promising treatment in several types of cancer. However, not all cancer types have been tested in immunotherapeutic trials, and different patients and cancer types may have unpredictable clinical outcomes. This situation has created a particular exigency for analyzing the prognostic significance of tumor-infiltrating T cells (TIL-T) and B cells (TIL-B) across different cancer types. To address the critical role of TILs, the abundances of TIL-T and TIL-B cells, as determined by the protein levels of LCK and CD20, were analyzed across heterogeneous human malignancies. TIL-T and TIL-B cells showed varying prognostic significances across heterogeneous cancer types. Additionally, distinct distributions of TIL-T and TIL-B cells were observed in different cancer and tumor microenvironment (TME) subtypes. Next, we analyzed the cellular context for the TME communication network involving the well-acknowledgeable chemokine receptors of TIL-T and TIL-B cells, implying the functional interactions with TME. Additionally, these chemokine receptors, expressed by TIL-T and TIL-B cells, were remarkably correlated with the levels of TIL-T or TIL-B cell infiltrations across nearly all the cancer types, indicating these chemokine receptors as universal targets for up- and down-regulating the TIL-T and TIL-B cells. Lastly, we provide the prognostic landscape of TIL-T and TIL-B cells across 30 cancer types and the subgroups defined by gender, histopathology, histological grade, therapeutic approach, drug, and TME subtype, which are intended to be a resource to fuel the investigations of TILs, with important implications for cancer immunotherapy.


Asunto(s)
Linfocitos B/inmunología , Inmunidad Celular , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Humanos , Neoplasias/diagnóstico , Pronóstico
19.
Cell Mol Immunol ; 18(8): 1995-2009, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33177695

RESUMEN

Negative regulation of antitumor T-cell-immune responses facilitates tumor-immune escape. Here, we show that deletion of CD147, a type I transmembrane molecule, in T cells, strongly limits in vivo tumor growth of mouse melanoma and lung cancer in a CD8+ T-cell-dependent manner. In mouse tumor models, CD147 expression was upregulated on CD8+ tumor-infiltrating lymphocytes (TILs), and CD147 was coexpressed with two immune-checkpoint molecules, Tim-3 and PD-1. Mining publicly available gene-profiling data for CD8+ TILs in tumor biopsies from metastatic melanoma patients showed a higher level of CD147 expression in exhausted CD8+ TILs than in other subsets of CD8+ TILs, along with expression of PD-1 and TIM-3. Additionally, CD147 deletion increased the abundance of TILs, cytotoxic effector function of CD8+ T cells, and frequency of PD-1+ CD8+ TILs, and partly reversed the dysfunctional status of PD-1+Tim-3+CD8+ TILs. The cytotoxic transcription factors Runx3 and T-bet mediation enhanced antitumor responses by CD147-/- CD8+ T cells. Moreover, CD147 deletion in T cells increased the frequency of TRM-like cells and the expression of the T-cell chemokines CXCL9 and CXCL10 in the tumor microenvironment. Analysis of tumor tissue samples from patients with non-small-cell lung cancer showed negative correlations between CD147 expression on CD8+ TILs and the abundance of CD8+ TILs, histological grade of the tumor tissue samples, and survival of patients with advanced tumors. Altogether, we found a novel function of CD147 as a negative regulator of antitumor responses mediated by CD8+ TILs and identified CD147 as a potential target for cancer immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Inmunidad , Neoplasias Pulmonares/metabolismo , Linfocitos Infiltrantes de Tumor , Ratones , Microambiente Tumoral
20.
Signal Transduct Target Ther ; 6(1): 268, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262017

RESUMEN

Major gaps in understanding the molecular mechanisms of colorectal cancer (CRC) progression and intestinal mucosal repair have hampered therapeutic development for gastrointestinal disorders. Trefoil factor 3 (TFF3) has been reported to be involved in CRC progression and intestinal mucosal repair; however, how TFF3 drives tumors to become more aggressive or metastatic and how TFF3 promotes intestinal mucosal repair are still poorly understood. Here, we found that the upregulated TFF3 in CRC predicted a worse overall survival rate. TFF3 deficiency impaired mucosal restitution and adenocarcinogenesis. CD147, a membrane protein, was identified as a binding partner for TFF3. Via binding to CD147, TFF3 enhanced CD147-CD44s interaction, resulting in signal transducer and activator of transcription 3 (STAT3) activation and prostaglandin G/H synthase 2 (PTGS2) expression, which were indispensable for TFF3-induced migration, proliferation, and invasion. PTGS2-derived PGE2 bound to prostaglandin E2 receptor EP4 subtype (PTGER4) and contributed to TFF3-stimulated CRC progression. Solution NMR studies of the TFF3-CD147 interaction revealed the key residues critical for TFF3 binding and the induction of PTGS2 expression. The ability of TFF3 to enhance mucosal restitution was weakened by a PTGS2 inhibitor. Blockade of TFF3-CD147 signaling using competitive inhibitory antibodies or a PTGS2 inhibitor reduced CRC lung metastasis in mice. Our findings bring strong evidence that CD147 is a novel receptor for TFF3 and PTGS2 signaling is critical for TFF3-induced mucosal restitution and CRC progression, which widens and deepens the understanding of the molecular function of trefoil factors.


Asunto(s)
Basigina/genética , Neoplasias Colorrectales/tratamiento farmacológico , Ciclooxigenasa 2/genética , Subtipo EP4 de Receptores de Prostaglandina E/genética , Factor Trefoil-3/genética , Animales , Basigina/antagonistas & inhibidores , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ciclooxigenasa 2/efectos de los fármacos , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Unión Proteica/efectos de los fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA