Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(19): e202400876, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38477508

RESUMEN

Lithium (Li) metal batteries (LMBs) are deemed as ones of the most promising energy storage devices for next electrification applications. However, the uneven Li electroplating process caused by the diffusion-limited Li+ transportation at the Li metal surface inherently promotes the formation of dendritic morphology and instable Li interphase, while the sluggish Li+ transfer kinetic can also cause lithiation-induced stress on the cathode materials suffering from serious structural stability. Herein, a novel electrolyte designing strategy is proposed to accelerate the Li+ transfer by introducing a trace of large organic polar molecules of lithium phytate (LP) without significantly altering the electrolyte structure. The LP molecules can afford a competitive solvent attraction mechanism against the solvated Li+, enhancing both the bulk and interfacial Li+ transfer kinetic, and creating better anode/cathode interfaces to suppress the side reactions, resulting in much improved cycling efficiency of LMBs. Using LP-based electrolyte, the performance of LMB pouch cell with a practical capacity of ~1.5 Ah can be improved greatly. This strategy opens up a novel electrolyte designing route for reliable LMBs.

2.
Angew Chem Int Ed Engl ; : e202409193, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985085

RESUMEN

The limited oxidation stability of ether solvents has posed significant challenges for their applications in high-voltage lithium metal batteries (LMBs). To tackle this issue, the prevailing strategy either adopts a high concentration of fluorinated salts or relies on highly fluorinated solvents, which will significantly increase the manufacturing cost and create severe environmental hazards. Herein, an alternative and sustainable salt engineering approach is proposed to enable the utilization of dilute electrolytes consisting of fluorine (F)-free ethers in high-voltage LMBs. The proposed 0.8 M electrolyte supports stable lithium plating-stripping with a high Coulombic efficiency of 99.47% and effectively mitigates the metal dissolution, phase transition, and gas release issues of the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode upon charging to high voltages. Consequently, the 4.5 V high-loading Li||NCM 811 cell shows a capacity retention of 75.2% after 300 cycles. Multimodal experimental characterizations coupled with theoretical investigations demonstrate that the boron-containing salt plays a pivotal role in forming the passivation layers on both anode and cathode. The present simple and cost-effective electrolyte design strategy offers a promising and alternative avenue for using commercially mature, environmentally benign, and low-cost F-free ethers in high-voltage LMBs.

3.
Adv Mater ; : e2408903, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032100

RESUMEN

The unique structure and exceptionally high lithium ion conductivity over 10 mS cm-1 of Li10GeP2S12 have gained extensive attention in all-solid-state lithium batteries. However, its poor resistivity to moisture and chemical/electrochemical incompatibility with lithium metal severely impede its practical application. Herein, a fluorine functionalized Li10GeP2S12 is synthesized by stannous fluoride doping and employed as a monolayer solid electrolyte to realize stable all-solid-state lithium batteries. The atomic-scale mechanism underlying the impact of fluorine doping on both moisture and electrochemical stability of Li10GeP2S12 is revealed by density functional theory calculations. Fluorine surface doping significantly reduces surface hydrophilicity by electronic regulation, thereby retarding the hydrolysis reaction of Li10GeP2S12. After exposed to a relative humidity of 35%-40% for 20 min, the ionic conductivity of Li9.98Ge0.99Sn0.01P2S11.98F0.02 maintains as high as 2.21 mS cm-1, nearly one order of magnitude higher than that of Li10GeP2S12 with 0.31 mS cm-1. Meanwhile, bulk doping of highly electronegative fluorine promotes the formation of lithium vacancies in the Li10GeP2S12 system, thus allowing stable lithium plating/stripping in Li | Li symmetric batteries, boosting a critical current density reaching 2.1 mA cm-2. The LiCoO2 | lithium all-solid-state batteries display improved cycling stability and rate capability, showing 80.1% retention after 600 cycles at 1C.

4.
Adv Mater ; : e2311475, 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38245862

RESUMEN

All-solid-state sodium batteries (ASSSBs) are particularly attractive for large-scale energy storage and electric vehicles due to their exceptional safety, abundant resource availability, and cost-effectiveness. The growing demand for ASSSBs underscores the significance of sodium solid electrolytes; However, the existed challenges of sodium solid electrolytes hinder their practical application despite continuous research efforts. Herein, recent advancements and the challenges for sodium solid electrolytes from material to battery level are reviewed. The in-depth understanding of their fundamental properties, synthesis techniques, crystal structures and recent breakthroughs is presented. Moreover, critical challenges on inorganic sodium solid electrolytes are emphasized, including the imperative need to enhance ionic conductivity, fortifying interfacial compatibility with anode/cathode materials, and addressing dendrite formation issues. Finally, potential applications of these inorganic sodium solid electrolytes are explored in ASSSBs and emerging battery systems, offering insights into future research directions.

5.
ACS Appl Mater Interfaces ; 16(4): 4847-4853, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38241525

RESUMEN

Sodium solid electrolytes with high ionic conductivity and good interfacial stability with sodium metal are crucial to realize high-performance all-solid-state sodium batteries. In this work, W and B-codoped Na3Sb1-xWxS4-xBx solid electrolytes are prepared by melt-quenching with further annealing. The synthesized Na3Sb0.95W0.05S3.95B0.05 solid electrolyte possesses a high ionic conductivity of 11.06 mS cm-1 under 25 °C and shows significantly improved interface compatibility with metal sodium. Specifically, Na/Na3Sb0.95W0.05S3.95B0.05/Na symmetric cell can stable cycle for 500 h under a current density of 0.05 mA cm-2. In addition, the resultant TiS2/Na3Sb0.95W0.05S3.95B0.05/Na battery exhibits an initial charge capacity of 164.1 mAh g-1 at 0.1 C with a capacity retention of 76.4% after 100 cycles. This work provides a new strategy to realize the high ionic conductivity of sodium solid electrolytes with improved interfacial stability with sodium anode.

6.
ChemSusChem ; : e202400481, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38571332

RESUMEN

All-solid-state sodium metal batteries face the challenges of low ionic conductivity of solid electrolytes and poor wettability towards metallic Na anode. Herein, Na3Zr2Si2PO12 solid electrolyte is doped with Ca2+, obtaining a high ionic conductivity of 2.09×10-3 S cm-1 with low electronic conductivity of 1.43×10-8 S cm-1 at room temperature, which could accelerate Na+ transportation and suppress sodium dendrite growth. Meanwhile, a graphite-based interface layer is coated on Na3.4Zr1.8Ca0.2Si2PO12 (Na3.4Zr1.8Ca0.2Si2PO12-G) in order to improve the solid-solid contact between solid electrolyte and Na anode, realizing a uniform current distribution and smooth Na metal plating/stripping, and thus achieving a triple higher critical current density of 3.5 mA cm-2 compared with that of Na3.4Zr1.8Ca0.2Si2PO12. In addition, the assembled Na3V2(PO4)3/Na3.4Zr1.8Ca0.2Si2PO12-G/Na all-solid-state battery exhibits excellent electrochemical performances with a reversible capacity of 81.47 mAh g-1 at 1 C and capacity retention of 97.75 % after 500 cycles.

7.
Adv Mater ; 36(26): e2400165, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38618658

RESUMEN

Protection of lithium (Li) metal electrode is a core challenge for all-solid-state Li metal batteries (ASSLMBs). Carbon materials with variant structures have shown great effect of Li protection in liquid electrolytes, however, can accelerate the solid-state electrolyte (SE) decomposition owing to the high electronic conductivity, seriously limiting their application in ASSLMBs. Here, a novel strategy is proposed to tailor the carbon materials for efficient Li protection in ASSLMBs, by in situ forming a rational niobium-based Li-rich disordered rock salt (DRS) shell on the carbon materials, providing a favorable percolating Li+ diffusion network for speeding the carbon lithiation, and enabling simultaneously improved lithiophilicity and reduced electronic conductivity of the carbon structure at deep lithiation state. Using the proposed strategy, different carbon materials, such as graphitic carbon paper and carbon nanotubes, are tailored with great ability to speed the interfacial kinetics, homogenize the Li plating/stripping processes, and suppress the SE decompositions, enabling much improved performances of ASSLMBs under various conditions approaching the practical application. This strategy is expected to create a novel roadmap of Li protection for developing reliable high-energy-density ASSLMBs.

8.
Nanoscale ; 16(18): 8915-8921, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38639636

RESUMEN

All-solid-state lithium batteries coupled with transition metal sulfide cathodes have gained significant attention due to their high energy density and exceptional safety. However, there are still critical challenges impeding their practical application, such as limited capacity delivery, weak ionic reaction kinetics and volume expansion. Herein, an a-NbS4/20%VGCF@15%Li7P3S11 nanocomposite cathode material is employed in all-solid-state batteries. A certain proportion of VGCF is introduced into crystalline NbS4 in order to mitigate the volume expansion and improve electronic conductivity. At the same time, a-NbS4/20%VGCF is in situ coated with a Li7P3S11 solid electrolyte layer to achieve an intimate interfacial contact. The obtained a-NbS4/20%VGCF@15%Li7P3S11 nanocomposite exhibits a remarkable electronic conductivity (1.0 × 10-1 S cm-1) and ionic conductivity (5.5 × 10-4 S cm-1), which are improved by five and two orders of magnitude compared to those of NbS4, respectively. The Li/Li6PS5Cl/a-NbS4/20%VGCF@15%Li7P3S11 battery exhibits a high initial discharge capacity of 1043.25 mA h g-1 at 0.1 A g-1. Even at 0.5 A g-1, it could provide a reversible capacity of 403.2 mA h g-1 after 500 cycles. This work provides a promising cathode material for all-solid-state lithium batteries with improved ionic/electronic conductivity, high reversible capacity and superior cycling stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA