Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(35)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38806006

RESUMEN

Artificially synthesized DNA is involved in the construction of a library of oil tracers due to their unlimited number and no-biological toxicity. The strategy of the construction is proposed by oleophilic Silica-encapsulated DNA nanoparticles, which offers fresh thinking in developing novel tracers, sensors, and molecular machines in engineering & applied sciences based on artificially synthesized DNA blocks.


Asunto(s)
ADN , Nanopartículas , Dióxido de Silicio , Dióxido de Silicio/química , ADN/química , Nanopartículas/química , Aceites/química
2.
Antib Ther ; 7(2): 157-163, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38933531

RESUMEN

The recent discovery of public antibodies targeting Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFINs), which contain extracellular immunoglobulin-like domains from LAIR1 or LILRB1, constitutes a significant step forward in comprehending the reactivity of the Plasmodium parasite. These antibodies arise from unique B cell clones and demonstrate extensive cross-reactivity through their interaction with P. falciparum RIFINs. LAIR1 and LILRBs are specialized type I transmembrane glycoproteins, classified as immune inhibitory receptors, restricted to primates and mainly found on hematopoietic cells. They are instrumental in modulating interactions within the tumor microenvironment and across the immune system, and are increasingly recognized as important in anti-cancer immunotherapy and pathogen defense. The presence of LAIR1/LILRB1-containing antibodies offers new insights into malaria parasite evasion strategies and the immune system's response. Additionally, the innovative method of integrating extra exons into the antibody switch region is a noteworthy advancement, enriching the strategies for the generation of a varied array of bispecific and multispecific antibodies.

3.
Adv Sci (Weinh) ; 11(15): e2305316, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342604

RESUMEN

Chronic hepatitis B (CHB) remains a major public health concern because of the inefficiency of currently approved therapies in clearing the hepatitis B surface antigen (HBsAg). Antibody-based regimens have demonstrated potency regarding virus neutralization and HBsAg clearance. However, high dosages or frequent dosing are required for virologic control. In this study, a dual-domain-engineered anti-hepatitis B virus (HBV) therapeutic antibody 73-DY is developed that exhibits significantly improved efficacy regarding both serum and intrahepatic viral clearance. In HBV-tolerant mice, administration of a single dose of 73-DY at 2 mg kg-1 is sufficient to reduce serum HBsAg by over 3 log10 IU mL-1 and suppress HBsAg to < 100 IU mL-1 for two weeks, demonstrating a dose-lowering advantage of at least tenfold. Furthermore, 10 mg kg-1 of 73-DY sustainably suppressed serum viral levels to undetectable levels for ≈ 2 weeks. Molecular analyses indicate that the improved efficacy exhibited by 73-DY is attributable to the synergy between fragment antigen binding (Fab) and fragment crystallizable (Fc) engineering, which conferred sustained viral suppression and robust viral eradication, respectively. Long-term immunotherapy with reverse chimeric 73-DY facilitated the restoration of anti-HBV immune responses. This study provides a foundation for the development of next-generation antibody-based CHB therapies.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica , Ratones , Animales , Antígenos de Superficie de la Hepatitis B/análisis , Hepatitis B Crónica/tratamiento farmacológico , Virus de la Hepatitis B , Anticuerpos , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA