Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Dement ; 20(6): 4043-4065, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38713744

RESUMEN

INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Proteómica , Humanos , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Masculino , Anciano , Femenino , Encéfalo/metabolismo , Tauopatías/líquido cefalorraquídeo , Tauopatías/sangre , Parálisis Supranuclear Progresiva/líquido cefalorraquídeo , Parálisis Supranuclear Progresiva/sangre , Angiopatía Amiloide Cerebral/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/genética , Persona de Mediana Edad , Anciano de 80 o más Años , Proteínas tau/líquido cefalorraquídeo
2.
Alzheimers Dement ; 20(10): 7174-7192, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39215503

RESUMEN

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked Black Americans (BA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from BA (n = 306), LA (n = 326), or BA and LA (n = 4) brain donors plus non-Hispanic White (n = 252) and other (n = 20) ethnic groups, to establish a foundational dataset enriched for BA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: The inclusion of traditionally underrepresented groups in multi-omics studies is essential to discovering the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD. HIGHLIGHTS: Accelerating Medicines Partnership in Alzheimer's Disease Diversity Initiative led brain tissue profiling in multi-ethnic populations. Brain multi-omics data is generated from Black American, Latin American, and non-Hispanic White donors. RNA, whole genome sequencing and tandem mass tag proteomicsis completed and shared. Multiple brain regions including caudate, temporal and dorsolateral prefrontal cortex were profiled.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/etnología , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Anciano , Masculino , Negro o Afroamericano/genética , Anciano de 80 o más Años , Etnicidad/genética , Hispánicos o Latinos/genética , Población Blanca/genética , Transcriptoma , Multiómica
3.
Neurobiol Dis ; 186: 106286, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37689213

RESUMEN

Cognitive impairment in the elderly features complex molecular pathophysiology extending beyond the hallmark pathologies of traditional disease classification. Molecular subtyping using large-scale -omic strategies can help resolve this biological heterogeneity. Using quantitative mass spectrometry, we measured ∼8000 proteins across >600 dorsolateral prefrontal cortex tissues with clinical diagnoses of no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia. Unbiased classification of MCI and AD cases based on individual proteomic profiles resolved three classes with expression differences across numerous cell types and biological ontologies. Two classes displayed molecular signatures atypical of AD neurodegeneration, such as elevated synaptic and decreased inflammatory markers. In one class, these atypical proteomic features were associated with clinical and pathological hallmarks of cognitive resilience. We were able to replicate these classes and their clinicopathological phenotypes across two additional tissue cohorts. These results promise to better define the molecular heterogeneity of cognitive impairment and meaningfully impact its diagnostic and therapeutic precision.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Humanos , Proteoma , Proteómica , Encéfalo
4.
Angew Chem Int Ed Engl ; 62(14): e202300238, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36752412

RESUMEN

Cyclic ether, such as 1,3-dioxolane (DOL), are promising solvent for low-temperature electrolytes because of the low freezing point. Their use in electrolytes, however, is severely limited since it easily polymerizes in the presence of lithium inorganic salts. The trace water plays a key role via providing the source (proton) for chain initiation, which has, unfortunately, been neglected in most cases. In this work, we present an electrophile, trimethylsilyl isocyanate (Si-NCO), as the water scavenger, which eliminates moisture by a nucleophilic addition reaction. Si-NCO allows DOL to maintain liquid over a wide temperature range even in high-concentration electrolyte. Electrolyte with Si-NCO additive shows promising low-temperature performance. Our finding expands the use of cyclic ether solvents in the presence of inorganic salts and highlights a large space for unexplored design of water scavenger with electrophilic feature for low-temperature electrolytes.

5.
J Biol Chem ; 297(5): 101306, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34673031

RESUMEN

Posttranslational modifications (PTMs) such as phosphorylation of RNA-binding proteins (RBPs) regulate several critical steps in RNA metabolism, including spliceosome assembly, alternative splicing, and mRNA export. Notably, serine-/arginine- (SR)-rich RBPs are densely phosphorylated compared with the remainder of the proteome. Previously, we showed that dephosphorylation of the splicing factor SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. However, the large-scale functional and structural impact of these modifications on RBPs remains unclear. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass-spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. We determined that phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high-molecular-weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine/arginine protein kinase 2 (SRPK2) in vitro decreased high-molecular-weight SRSF2 species formation. Furthermore, upon pharmacological inhibition of SRPKs in mammalian cells, we observed SRSF2 cytoplasmic mislocalization and increased formation of cytoplasmic granules as well as cytoplasmic tubular structures that associated with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization.


Asunto(s)
Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Factores de Empalme Serina-Arginina/genética
6.
J Biol Chem ; 289(40): 27625-39, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25143386

RESUMEN

Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI(+)] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI(+)] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI(+)] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Respuesta al Choque Térmico , Factores de Terminación de Péptidos/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas Portadoras/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Factores de Terminación de Péptidos/genética , Priones/genética , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Adv Mater ; 36(1): e2307220, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37742095

RESUMEN

Despite the high energy of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathode, it still suffers serious decay due to the continuous solvents decomposition and unstable cathode electrolyte interphase (CEI) layers, especially under high temperatures. The intense exothermic reaction between delithiated NCM811 and flammable electrolyte, on the other hand, pushes the batteries to their safety limit. Herein, these two issues are tackled via engineering the electrolytes, that is, utilizing salts with higher HOMO levels and nonflammable solvents with lower HOMO levels, to reduce the massive decomposition of solvents and improve battery safety under elevated temperatures. Consequently, a thin and boron-rich CEI is generated, which effectively inhibited the side reactions, thus improving the cycling stability and safety. Deviated from the highly concentrated electrolytes which heavily relies on the usage of massive salts, the electrolyte recipe can introduce a robust inorganic-rich CEI but use much less salt (i.e., dilute electrolyte), and thus, offer an encouraging alternative toward practical applications. As such, the NCM811 cathode exhibits a high-capacity retention of 81.2% after 950 cycles at 25 °C and 75% after 300 cycles at 55 °C. This work provides a universal electrolyte design strategy for designing stable and safe high-temperature electrolytes for the NCM811 cathode.

8.
Nat Commun ; 15(1): 8866, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402040

RESUMEN

Rechargeable batteries with high durability over wide temperature is needed in aerospace and submarine fields. Unfortunately, Current battery technologies suffer from limited operating temperatures due to the rapid performance decay at extreme temperatures. A major challenge for wide-temperature electrolyte design lies in restricting the parasitic reactions at elevated temperatures while improving the reaction kinetics at low temperatures. Here, we demonstrate a temperature-adaptive electrolyte design by regulating the dipole-dipole interactions at various temperatures to simultaneously address the issues at both elevated and subzero temperatures. This approach prevents electrolyte degradation while endowing it with the ability to undergo adaptive changes as temperature varies. Such electrolyte favors to form solvation structure with high thermal stability with rising temperatures and transits to one that prevents salt precipitation at lower temperatures. This ensures stably within a wide temperature range of ‒60 -55 °C. This temperature-adaptive electrolyte opens an avenue for wide-temperature electrolyte design, highlighting the significance of dipole-dipole interactions in regulating solvation structures.

9.
Mol Neurodegener ; 19(1): 67, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380021

RESUMEN

INTRODUCTION: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. METHODS: We employed heparin-affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to enrich HBPs from plasma obtained from AD (n = 62) and control (n = 47) samples. These profiles were then correlated to Aß, tau and phosphorylated tau (pTau) CSF biomarkers and plasma pTau181 from the same individuals, as well as a consensus brain proteome network to assess the overlap with AD brain pathophysiology. RESULTS: Heparin enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundant proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude in abundance, were measured across 109 samples. Compared to the consensus AD brain protein co-expression network, we observed that specific plasma proteins exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes, highlighting the complex interplay between the two compartments. Elevated proteins in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate with Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and the APOE4 proteoform. Additionally, heparin-enriched proteins in plasma demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau181. A panel of five plasma proteins classified AD from control individuals with an area under the curve (AUC) of 0.85. When combined with plasma pTau181, the panel significantly improved the classification performance of pTau181 alone, increasing the AUC from 0.93 to 0.98. This suggests that the heparin-enriched plasma proteome captures additional variance in cognitive dementia beyond what is explained by pTau181. CONCLUSION: These findings support the utility of a heparin-affinity approach coupled with TMT-MS for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Heparina , Proteoma , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/metabolismo , Humanos , Proteoma/metabolismo , Anciano , Masculino , Femenino , Heparina/metabolismo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/sangre , Proteómica/métodos , Anciano de 80 o más Años , Proteínas tau/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Persona de Mediana Edad
10.
Res Sq ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38464223

RESUMEN

Introduction: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. Methods: We employed heparin affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to capture and enrich HBPs in plasma obtained from AD (n=62) and control (n=47) samples. These profiles were then correlated to a consensus AD brain proteome, as well as with Aß, tau and phosphorylated tau (pTau) CSF biomarkers from the same individuals. We then leveraged published human postmortem brain proteome datasets to assess the overlap with the heparin-enriched plasma proteome. Results: Heparin-enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundance proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude were detectable. Utilizing a consensus AD brain protein co-expression network, we observed that specific plasma HBPs exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes highlighting the complex interplay between the two compartments. Elevated HBPs in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate within Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and APOE. Additionally, heparin enriched plasma proteins demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau from the same individuals. Conclusion: These findings support the utility of a heparin-affinity approach for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.

11.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328211

RESUMEN

Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.

12.
medRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260316

RESUMEN

Dysfunction of the neurovascular unit stands as a significant pathological hallmark of Alzheimer's disease (AD) and age-related neurodegenerative diseases. Nevertheless, detecting vascular changes in the brain within bulk tissues has proven challenging, limiting our ability to characterize proteomic alterations from less abundant cell types. To address this challenge, we conducted quantitative proteomic analyses on both bulk brain tissues and cerebrovascular-enriched fractions from the same individuals, encompassing cognitively unimpaired control, progressive supranuclear palsy (PSP), and AD cases. Protein co-expression network analysis identified modules unique to the cerebrovascular fractions, specifically enriched with pericytes, endothelial cells, and smooth muscle cells. Many of these modules also exhibited significant correlations with amyloid plaques, cerebral amyloid angiopathy (CAA), and/or tau pathology in the brain. Notably, the protein products within AD genetic risk loci were found concentrated within modules unique to the vascular fractions, consistent with a role of cerebrovascular deficits in the etiology of AD. To prioritize peripheral AD biomarkers associated with vascular dysfunction, we assessed the overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with a vascular-enriched network modules in the brain. This analysis highlighted matrisome proteins, SMOC1 and SMOC2, as being increased in CSF, plasma, and brain. Immunohistochemical analysis revealed SMOC1 deposition in both parenchymal plaques and CAA in the AD brain, whereas SMOC2 was predominantly localized to CAA. Collectively, these findings significantly enhance our understanding of the involvement of cerebrovascular abnormalities in AD, shedding light on potential biomarkers and molecular pathways associated with CAA and vascular dysfunction in neurodegenerative diseases.

13.
Mol Neurodegener ; 19(1): 60, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107789

RESUMEN

Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Proteómica , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteómica/métodos , Anciano , Femenino , Masculino , Anciano de 80 o más Años , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Corteza Prefrontal/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
14.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659743

RESUMEN

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

15.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712030

RESUMEN

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

16.
Adv Mater ; 35(28): e2301817, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37003702

RESUMEN

Salt precipitation at temperatures far above the freezing point of solvents is primarily responsible for performance decay of rechargeable batteries at low temperature, yet is still challenged by a lack of in-depth understanding of the design principle and ultimate solutions. Here, this is resolved via tuning the entropy of solvation in a strong-solvation (SS) and weak-solvation (WS) solvent mixture, in which a solvation structure can spontaneously transform at low temperature to avoid salt precipitation, endowing the electrolyte with a temperature-adaptive feature. The results affirm that such temperature-adaptive electrolyte ensures encouraging low-temperature performance in a hard carbon||Na2/3 Ni1/4 Cu1/12 Mn2/3 O2 full cell with 90.6% capacity retention over 400 cycles at -40 °C. The generality of the concept is further expanded to construct a series of SS-WS electrolytes as potential candidates for rechargeable low-temperature sodium-ion batteries. The work shed lights on the importance of entropy tuning and affords a rational viewpoint on designing low-temperature electrolytes.


Asunto(s)
Frío , Sodio , Temperatura , Entropía , Iones , Cloruro de Sodio , Solventes
17.
Artículo en Inglés | MEDLINE | ID: mdl-36780508

RESUMEN

Cyclic ethers are promising solvents for low-temperature electrolytes, but they still suffer from intrinsic poor antioxidant abilities. Until now, ether-based electrolytes have been rarely reported for high-voltage sodium-ion batteries (SIBs) operated under a low-temperature range. Herein, a novel ether-based electrolyte consisting of tetrahydrofuran as the main solvent is proposed and it could be utilized for a high-voltage Na2/3Mn2/3Ni1/3O2 (MN) cathode in a wide-temperature range from -40 to 25 °C. Meanwhile, a thin and robust inorganic component-rich cathode electrolyte interface layer is elaborately introduced on the MN cathode by this tailored electrolyte, resulting in excellent cycle life of MN cathode. Specifically, a capacity retention of 97.2% after 140 cycles could be delivered by MN at 0.3 C at room temperature (RT). Especially at an ultra-low temperature of -40 °C, the initial discharge capacity of MN could still approach 89.3% of that at RT, and the capacity retention is 94.1% at 0.2 C after 100 cycles. This work provides a new insight into the rational design of ether-based electrolytes for high-voltage and stable SIBs operated in a wide-temperature range.

18.
Nat Neurosci ; 25(2): 213-225, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115731

RESUMEN

The biological processes that are disrupted in the Alzheimer's disease (AD) brain remain incompletely understood. In this study, we analyzed the proteomes of more than 1,000 brain tissues to reveal new AD-related protein co-expression modules that were highly preserved across cohorts and brain regions. Nearly half of the protein co-expression modules, including modules significantly altered in AD, were not observed in RNA networks from the same cohorts and brain regions, highlighting the proteopathic nature of AD. Two such AD-associated modules unique to the proteomic network included a module related to MAPK signaling and metabolism and a module related to the matrisome. The matrisome module was influenced by the APOE ε4 allele but was not related to the rate of cognitive decline after adjustment for neuropathology. By contrast, the MAPK/metabolism module was strongly associated with the rate of cognitive decline. Disease-associated modules unique to the proteome are sources of promising therapeutic targets and biomarkers for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/patología , Humanos , Proteoma , Proteómica , ARN/metabolismo
19.
Mol Neurodegener ; 16(1): 40, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172091

RESUMEN

BACKGROUND: There is an association between repetitive head injury (RHI) and a pathologic diagnosis of chronic traumatic encephalopathy (CTE) characterized by the aggregation of proteins including tau. The underlying molecular events that cause these abnormal protein accumulations remain unclear. Here, we hypothesized that identifying the human brain proteome from serial CTE stages (CTE I-IV) would provide critical new insights into CTE pathogenesis. Brain samples from frontotemporal lobar degeneration due to microtubule associated protein tau (FTLD-MAPT) mutations were also included as a distinct tauopathy phenotype for comparison. METHODS: Isobaric tandem mass tagged labeling and mass spectrometry (TMT-MS) followed by integrated differential and co-expression analysis (i.e., weighted gene co-expression network analysis (WGCNA)) was used to define modules of highly correlated proteins associated with clinical and pathological phenotypes in control (n = 23), CTE (n = 43), and FTLD-MAPT (n = 12) post-mortem cortical tissues. We also compared these findings to network analysis of AD brain. RESULTS: We identified over 6000 unique proteins across all four CTE stages which sorted into 28 WGCNA modules. Consistent with Alzheimer's disease, specific modules demonstrated reduced neuronal protein levels, suggesting a neurodegeneration phenotype, while other modules were increased, including proteins associated with inflammation and glial cell proliferation. Notably, unique CTE-specific modules demonstrated prominent enrichment of immunoglobulins, including IGHM and IGLL5, and extracellular matrix (ECM) proteins as well as progressive protein changes with increasing CTE pathologic stage. Finally, aggregate cell subtype (i.e., neurons, microglia, astrocytes) protein abundance levels in CTE cases were similar in expression to AD, but at intermediate levels between controls and the more exaggerated phenotype of FTLD-MAPT, especially in astrocytes. CONCLUSIONS: Overall, we identified thousands of protein changes in CTE postmortem brain and demonstrated that CTE has a pattern of neurodegeneration in neuronal-synaptic and inflammation modules similar to AD. We also identified unique CTE progressive changes, including the enrichment of immunoglobulins and ECM proteins even in early CTE stages. Early and sustained changes in astrocyte modules were also observed. Overall, the prominent overlap with FTLD-MAPT cases confirmed that CTE is on the tauopathy continuum and identified CTE stage specific molecular phenotypes that provide novel insights into disease pathogenesis.


Asunto(s)
Encefalopatía Traumática Crónica/metabolismo , Encefalopatía Traumática Crónica/patología , Proteómica/métodos , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Fenotipo
20.
Sci Data ; 7(1): 315, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985496

RESUMEN

Alzheimer's disease (AD) is characterized by an early, asymptomatic phase (AsymAD) in which individuals exhibit amyloid-beta (Aß) plaque accumulation in the absence of clinically detectable cognitive decline. Here we report an unbiased multiplex quantitative proteomic and phosphoproteomic analysis using tandem mass tag (TMT) isobaric labeling of human post-mortem cortex (n = 27) across pathology-free controls, AsymAD and symptomatic AD individuals. With off-line high-pH fractionation and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) on an Orbitrap Lumos mass spectrometer, we identified 11,378 protein groups across three TMT 11-plex batches. Immobilized metal affinity chromatography (IMAC) was used to enrich for phosphopeptides from the same TMT-labeled cases and 51,736 phosphopeptides were identified. Of these, 48,992 were quantified by TMT reporter ions representing 33,652 unique phosphosites. Two reference standards in each TMT 11-plex were included to assess intra- and inter-batch variance at the protein and peptide level. This comprehensive human brain proteome and phosphoproteome dataset will serve as a valuable resource for the identification of biochemical, cellular and signaling pathways altered during AD progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Fosfoproteínas/metabolismo , Proteoma/análisis , Cromatografía Liquida , Humanos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA