Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Anal Chem ; 95(51): 18685-18690, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38086761

RESUMEN

Improper disposal of waste oils containing hazardous components damages the environment and the ecosystem, posing a significant threat to human life and health. Here, we present a method of discharge-assisted laser-induced breakdown spectroscopy combined with filter paper sampling (DA-LIBS-FPS) to detect hazardous components and trace the source of polluting elements. DA-LIBS-FPS significantly enhances spectral intensity by 1-2 orders of magnitude due to the discharge energy deposition into the laser-induced plasma and the highly efficient laser-sample interaction on the filter paper, when compared to single-pulse LIBS with silica wafer sampling (SP-LIBS-SWS). Additionally, the signal-to-noise ratio and the signal-to-background ratio are both significantly increased. Resultantly, indiscernible lines, such as CN and Cr I, are well distinguished. In contrast with DA-LIBS combined with silica wafer sampling (DA-LIBS-SWS), the spectral signal fluctuations in DA-LIBS-FPS are reduced by up to 33%, because of the homogeneous distribution of the oil layer on the filter paper in FPS. Further examination indicates that the limit of detection for Ba is reduced from a several parts per million level in SP-LIBS-SWS to a dozens of parts per billion level in DA-LIBS-FPS, i.e., nearly 2 orders of magnitude enhancement in analysis sensitivity. This improvement is attributed to the extended plasma lifespan in DA-LIBS and the increasing electron density and plasma temperature in FPS. DA-LIBS-FPS provides a low-cost, handy, rapid, and highly sensitive avenue to analyze the hazardous components in waste oils with great potential in environmental and ecological monitoring.

3.
Biochem Biophys Res Commun ; 513(4): 919-924, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31005258

RESUMEN

Chikungunya virus (CHIKV) is a re-emerging mosquito-transmitted RNA virus causing joint and muscle pain. Although the protein-protein interactions (PPIs) between nonstructural proteins of CHIKV have been extensively established, the complete CHIKV intraviral interactome remains to be elucidated. In this study, we examined all possible CHIKV intraviral PPIs by immunoprecipitation and constructed the intraviral interactome of CHIKV. We reported 19 novel PPIs including the homo-oligomerization of TF. Disulfide bonds promoted the oligomerization of CHIKV TF protein. 2-BP, a palmitoylation inhibitor reduced the palmitoylation of TF and increased TF oligomerization. A quadruple mutant of Cys33, Cys35, Cys41, and Cys43 in TF blocked its palmitoylation and reduced oligomerization. Furthermore, we determined the association of TF with nsP1 and nsP3 in a palmitoylation-dependent manner. Construction of intraviral interactome of CHIKV provides the basis for further studying the function of CHIKV proteins.


Asunto(s)
Virus Chikungunya/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas Virales/metabolismo , Inmunoprecipitación , Lipoilación , Multimerización de Proteína , Proteínas no Estructurales Virales/metabolismo , Proteínas Estructurales Virales/metabolismo
4.
J Virol ; 91(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28679754

RESUMEN

Claudin-1 is a hepatitis C virus (HCV) coreceptor required for viral entry. Although extensive studies have focused on claudin-1 as an anti-HCV target, little is known about how the level of claudin-1 at the cell surface is regulated by host vesicular transport. Here, we identified an interaction between claudin-1 and Sec24C, a cargo-sorting component of the coat protein complex II (COPII) vesicular transport system. By interacting with Sec24C through its C-terminal YV, claudin-1 is transported from the endoplasmic reticulum (ER) and is eventually targeted to the cell surface. Blocking COPII transport inhibits HCV entry by reducing the level of claudin-1 at the cell surface. These findings provide mechanistic insight into the role of COPII vesicular transport in HCV entry.IMPORTANCE Tight junction protein claudin-1 is one of the cellular receptors for hepatitis C virus, which infects 185 million people globally. Its cellular distribution plays important role in HCV entry; however, it is unclear how the localization of claudin-1 to the cell surface is controlled by host transport pathways. In this paper, we not only identified Sec24C as a key host factor for HCV entry but also uncovered a novel mechanism by which the COPII machinery transports claudin-1 to the cell surface. This mechanism might be extended to other claudins that contain a C-terminal YV or V motif.


Asunto(s)
Claudina-1/metabolismo , Hepacivirus/fisiología , Receptores Virales/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Internalización del Virus , Línea Celular , Hepatocitos/inmunología , Hepatocitos/fisiología , Humanos , Mapeo de Interacción de Proteínas , Transporte de Proteínas
5.
Cell Mol Life Sci ; 73(4): 869-81, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26298293

RESUMEN

Hepatitis C virus (HCV) has infected over 170 million people worldwide. Phosphatidylinositol 4-phosphate (PI4P) is the organelle-specific phosphoinositide enriched at sites of HCV replication. Whether retromer, a PI4P-related host transport machinery, unloads its cargo at HCV replication sites remains inconclusive. We sought to characterize the role of retromer in HCV replication. Here, we demonstrated the interaction between retromer subunit Vps35 and HCV NS5A protein by immunoprecipitation and GST pulldown. Vps35 colocalized with NS5A and PI4P in both OR6 replicon and JFH1 infected Huh 7.5.1 cells. HCV replication was inhibited upon silencing retromer subunits. CIMPR, a typical retromer cargo, participated in HCV replication. Our data suggest that retromer component Vps35 is recruited by NS5A to viral replication sites where PI4P unloads CIMPR. These findings demonstrate a dependence role of retromer in HCV replication and identify retromer as a potential therapeutic target against HCV.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Línea Celular , Humanos , Fosfatos de Fosfatidilinositol/análisis , Proteínas de Transporte Vesicular/análisis , Proteínas no Estructurales Virales/análisis
6.
Biochem Biophys Res Commun ; 475(1): 31-6, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27157138

RESUMEN

Lipid droplets are the place for HCV assembly and ADRP is an abundant lipid droplets-associated protein. However, little is known about the mechanisms how ADRP is involved in HCV life cycle. Here we demonstrate that activation of ARF1 dissociates ADRP from lipid droplets. A constitute active form of ARF1 (ARF1Q71I) promotes HCV assembly. We found that ADRP plays a positive role in HCV replication and a negative role in HCV assembly. Overexpression of ADRP increases the size of lipid droplets, while silencing ADRP reduces the size of lipid droplets. These findings provide new insight into the role of lipid droplets proteins in life cycle of HCV.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , Gotas Lipídicas/virología , Perilipina-2/metabolismo , Ensamble de Virus , Línea Celular , Hepatitis C/virología , Interacciones Huésped-Patógeno , Humanos , Gotas Lipídicas/metabolismo , Replicación Viral
7.
J Virol ; 88(11): 5956-66, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24623438

RESUMEN

UNLABELLED: Phosphatidylinositol 4-phosphate (PI4P) is well known to be upregulated during hepatitis C virus (HCV) replication. The role of PI4 kinases in HCV has been extensively investigated. Whether the PI4P phosphatase Sac1 is altered by HCV remains unclear. Here, we identified ARFGAP1 to be a novel host factor for HCV replication. We further show that Sac1 interacts with ARFGAP1 and inhibits HCV replication. The elevation of PI4P induced by HCV NS5A is abrogated when the coatomer protein I (COPI) pathway is inhibited. We also found an interaction between NS5A and ARFGAP1. Furthermore, we identified a conserved cluster of positively charged amino acids in NS5A critical for interaction between NS5A and ARFGAP1, induction of PI4P, and HCV replication. Our data demonstrate that ARFGAP1 is a host factor for HCV RNA replication. ARFGAP1 is hijacked by HCV NS5A to remove COPI cargo Sac1 from the site of HCV replication to maintain high levels of PI4P. Our findings provide an additional mechanism by which HCV enhances formation of a PI4P-rich environment. IMPORTANCE: PI4P is enriched in the replication area of HCV; however, whether PI4P phosphatase Sac1 is subverted by HCV is not established. The detailed mechanism of how COPI contributes to viral replication remains unknown, though COPI components were hijacked by HCV. We demonstrate that ARFGAP1 is hijacked by HCV NS5A to remove COPI cargo Sac1 from the HCV replication area to maintain high-level PI4P generated by NS5A. Furthermore, we identify a conserved cluster of positively charged amino acids in NS5A, which are critical for interaction between NS5A and ARFGAP1, induction of PI4P, and HCV replication. This study will shed mechanistic insight on how other RNA viruses hijack COPI and Sac1.


Asunto(s)
Microambiente Celular/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética , Línea Celular , Cartilla de ADN/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Plásmidos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
9.
mBio ; 15(3): e0237323, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38334805

RESUMEN

Rubella virus (RuV) is an enveloped plus-sense RNA virus and a member of the Rubivirus genus. RuV infection in pregnant women can lead to miscarriage or an array of severe birth defects known as congenital rubella syndrome. Novel rubiviruses were recently discovered in various mammals, highlighting the spillover potential of other rubiviruses to humans. Many features of the rubivirus infection cycle remain unexplored. To promote the study of rubivirus biology, here, we generated replication-competent recombinant VSV-RuV (rVSV-RuV) encoding the RuV transmembrane glycoproteins E2 and E1. Sequencing of rVSV-RuV showed that the RuV glycoproteins acquired a single-point mutation W448R in the E1 transmembrane domain. The E1 W448R mutation did not detectably alter the intracellular expression, processing, glycosylation, colocalization, or dimerization of the E2 and E1 glycoproteins. Nonetheless, the mutation enhanced the incorporation of RuV E2/E1 into VSV particles, which bud from the plasma membrane rather than the RuV budding site in the Golgi. Neutralization by E1 antibodies, calcium dependence, and cell tropism were comparable between WT-RuV and either rVSV-RuV or RuV containing the E1 W448R mutation. However, the E1 W448R mutation strongly shifted the threshold for the acid pH-triggered virus fusion reaction, from pH 6.2 for the WT RuV to pH 5.5 for the mutant. These results suggest that the increased resistance of the mutant RuV E1 to acidic pH promotes the ability of viral envelope proteins to generate infectious rVSV and provide insights into the regulation of RuV fusion during virus entry and exit.IMPORTANCERubella virus (RuV) infection in pregnant women can cause miscarriage or severe fetal birth defects. While a highly effective vaccine has been developed, RuV cases are still a significant problem in areas with inadequate vaccine coverage. In addition, related viruses have recently been discovered in mammals, such as bats and mice, leading to concerns about potential virus spillover to humans. To facilitate studies of RuV biology, here, we generated and characterized a replication-competent vesicular stomatitis virus encoding the RuV glycoproteins (rVSV-RuV). Sequence analysis of rVSV-RuV identified a single-point mutation in the transmembrane region of the E1 glycoprotein. While the overall properties of rVSV-RuV are similar to those of WT-RuV, the mutation caused a marked shift in the pH dependence of virus membrane fusion. Together, our studies of rVSV-RuV and the identified W448R mutation expand our understanding of rubivirus biology and provide new tools for its study.


Asunto(s)
Aborto Espontáneo , Vacunas , Estomatitis Vesicular , Humanos , Femenino , Embarazo , Animales , Ratones , Virus de la Rubéola/metabolismo , Mutación Puntual , Glicoproteínas/genética , Proteínas del Envoltorio Viral/genética , Vesiculovirus/genética , Mamíferos/metabolismo
10.
mBio ; 15(6): e0042024, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38700353

RESUMEN

Chikungunya virus (CHIKV) is an enveloped, positive-sense RNA virus that has re-emerged to cause millions of human infections worldwide. In humans, acute CHIKV infection causes fever and severe muscle and joint pain. Chronic and debilitating arthritis and joint pain can persist for months to years. To date, there are no approved antivirals against CHIKV. Recently, the ribonucleoside analog 4'-fluorouridine (4'-FlU) was reported as a highly potent orally available inhibitor of SARS-CoV-2, respiratory syncytial virus, and influenza virus replication. In this study, we assessed 4'-FlU's potency and breadth of inhibition against a panel of alphaviruses including CHIKV, and found that it broadly suppressed alphavirus production in cell culture. 4'-FlU acted on the viral RNA replication step, and the first 4 hours post-infection were the critical time for its antiviral effect. In vitro replication assays identified nsP4 as the target of inhibition. In vivo, treatment with 4'-FlU reduced disease signs, inflammatory responses, and viral tissue burden in mouse models of CHIKV and Mayaro virus infection. Treatment initiated at 2 hours post-infection was most effective; however, treatment initiated as late as 24-48 hours post-infection produced measurable antiviral effects in the CHIKV mouse model. 4'-FlU showed effective oral delivery in our mouse model and resulted in the accumulation of both 4'-FlU and its bioactive triphosphate form in tissues relevant to arthritogenic alphavirus pathogenesis. Together, our data indicate that 4'-FlU inhibits CHIKV infection in vitro and in vivo and is a promising oral therapeutic candidate against CHIKV infection.IMPORTANCEAlphaviruses including chikungunya virus (CHIKV) are mosquito-borne positive-strand RNA viruses that can cause various diseases in humans. Although compounds that inhibit CHIKV and other alphaviruses have been identified in vitro, there are no licensed antivirals against CHIKV. Here, we investigated a ribonucleoside analog, 4'-fluorouridine (4'-FlU), and demonstrated that it inhibited infectious virus production by several alphaviruses in vitro and reduced virus burden in mouse models of CHIKV and Mayaro virus infection. Our studies also indicated that 4'-FlU treatment reduced CHIKV-induced footpad swelling and reduced the production of pro-inflammatory cytokines. Inhibition in the mouse model correlated with effective oral delivery of 4'-FlU and accumulation of both 4'-FlU and its bioactive form in relevant tissues. In summary, 4'-FlU exhibits potential as a novel anti-alphavirus agent targeting the replication of viral RNA.


Asunto(s)
Alphavirus , Antivirales , Virus Chikungunya , Replicación Viral , Replicación Viral/efectos de los fármacos , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Ratones , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/fisiología , Alphavirus/efectos de los fármacos , Alphavirus/fisiología , Uridina/análogos & derivados , Uridina/farmacología , Humanos , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/virología , Modelos Animales de Enfermedad , Línea Celular , Chlorocebus aethiops , Femenino , Células Vero
11.
Virol Sin ; 38(4): 497-507, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37182691

RESUMEN

Chikungunya virus (CHIKV) is a re-emerging mosquito-transmitted RNA virus causing joint and muscle pain. To better understand how CHIKV rewires the host cell and usurps host cell functions, we generated a systematic CHIKV-human protein-protein interaction map and revealed several novel connections that will inform further mechanistic studies. One of these novel interactions, between the viral protein E1 and STIP1 homology and U-box containing protein 1 (STUB1), was found to mediate ubiquitination of E1 and degrade E1 through the proteasome. Capsid associated with G3BP1, G3BP2 and AAA+ â€‹ATPase valosin-containing protein (VCP). Furthermore, VCP inhibitors blocked CHIKV infection, suggesting VCP could serve as a therapeutic target. Further work is required to fully understand the functional consequences of these interactions. Given that CHIKV proteins are conserved across alphaviruses, many virus-host protein-protein interactions identified in this study might also exist in other alphaviruses. Construction of interactome of CHIKV provides the basis for further studying the function of alphavirus biology.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Virus , Animales , Humanos , Virus Chikungunya/genética , ADN Helicasas , Replicación Viral/fisiología , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión a Poli-ADP-Ribosa , Ubiquitina-Proteína Ligasas/metabolismo
12.
Nat Microbiol ; 8(9): 1653-1667, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591996

RESUMEN

Chikungunya virus (CHIKV) has recently emerged to cause millions of human infections worldwide. Infection can induce the formation of long intercellular extensions that project from infected cells and form stable non-continuous membrane bridges with neighbouring cells. The mechanistic role of these intercellular extensions in CHIKV infection was unclear. Here we developed a co-culture system and flow cytometry methods to quantitatively evaluate transmission of CHIKV from infected to uninfected cells in the presence of neutralizing antibody. Endocytosis and endosomal acidification were critical for virus cell-to-cell transmission, while the CHIKV receptor MXRA8 was not. By using distinct antibodies to block formation of extensions and by evaluation of transmission in HeLa cells that did not form extensions, we showed that intercellular extensions mediate CHIKV cell-to-cell transmission. In vivo, pre-treatment of mice with a neutralizing antibody blocked infection by direct virus inoculation, while adoptive transfer of infected cells produced antibody-resistant host infection. Together our data suggest a model in which the contact sites of intercellular extensions on target cells shield CHIKV from neutralizing antibodies and promote efficient intercellular virus transmission both in vitro and in vivo.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Animales , Ratones , Células HeLa , Anticuerpos Neutralizantes , Técnicas de Cocultivo
13.
Viruses ; 13(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063936

RESUMEN

Baby hamster kidney-21 (BHK-21) cells are widely used to propagate and study many animal viruses using infection and transfection techniques. Among various BHK-21 cell clones, the fibroblast-like BHK-21/C-13 line and the epithelial-like BHK-21/WI-2 line are commonly used cell clones for alphavirus research. Here we report that BHK-21/WI-2 cells were significantly less susceptible to primary infection by the alphavirus chikungunya virus (CHIKV) than were BHK-21/C-13 cells. The electroporation efficiency of alphavirus RNA into BHK-21/WI-2 was also lower than that of BHK-21/C-13. The growth of CHIKV was decreased in BHK-21/WI-2 compared to BHK-21/C-13, while primary infection and growth of the alphavirus Sindbis virus (SINV) were equivalent in the two cell lines. Our results suggested that CHIKV entry could be compromised in BHK-21/WI-2. Indeed, we found that the mRNA level of the CHIKV receptor MXRA8 in BHK-21/WI-2 cells was much lower than that in BHK-21/C-13 cells, and exogenous expression of either human MXRA8 or hamster MXRA8 rescued CHIKV infection. Our results affirm the importance of the MXRA8 receptor for CHIKV infection, and document differences in its expression in two clonal cell lines derived from the original BHK-21 cell cultures. Our results also indicate that CHIKV propagation and entry studies in BHK-21 cells will be significantly more efficient in BHK-21/C-13 than in BHK-21/WI-2 cells.


Asunto(s)
Virus Chikungunya/fisiología , Expresión Génica , Interacciones Huésped-Patógeno , Proteínas de la Membrana/genética , Animales , Línea Celular , Fiebre Chikungunya/genética , Fiebre Chikungunya/virología , Cricetinae , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas de la Membrana/metabolismo
14.
Front Microbiol ; 10: 636, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001221

RESUMEN

Viral protein 2C plays a critical role in EV-A71 replication. The discovery of 2C binding proteins will likely provide potential targets to treat EV-A71 infection. Here, we provide a global proteomic analysis of the human proteins that interact with the EV-A71 2C protein. TRIM4, exportin2, and ARFGAP1 were validated as 2C binding partners. Further functional studies revealed that TRIM4, exportin2, and ARFGAP1 were novel host dependency factors for EV-A71. Moreover, enteroviruses' 2C family proteins interacted with exportin2 and ARFGAP1. In conclusion, our study provides a cellular interactome of the EV-A71 2C and identifies the proviral roles of TRIM4, exportin2, and ARFGAP1 in EV-A71 infection.

15.
Front Microbiol ; 10: 2043, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551978

RESUMEN

Hepatitis C virus (HCV) entry is mediated by multiple co-receptors including scavenger receptor class B, type I (SR-BI). To elucidate the interactome of human SR-BI, we performed immunoprecipitation (IP) experiment coupled with mass spectrometry (MS) analysis. UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1), a key component of calnexin cycle involved in protein glycosylation, was identified as a SR-BI-interacting protein. Silencing UGGT1 or N-glycosylation inhibitor treatment reduced SR-BI protein level. Further study demonstrated that human SR-BI was N-glycosylated at nine asparagines. Moreover, HCV entry and infection were reduced by the absence of UGGT1. Interestingly, silencing SR-BI reduced protein stability of UGGT1 and protein quality control function mediated by UGGT1. Our finding not only identified UGGT1 as a HCV host factor, but also identified a UGGT1-mediated protein folding function for SR-BI.

16.
Sci Rep ; 7(1): 3976, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28638089

RESUMEN

Hepatitis C virus (HCV) entry into hepatocytes is a multistep process that represents a promising target for antiviral intervention. The viral envelope protein E1E2 plays a critical role in HCV entry. In this study, we sought to identify peptide inhibitors of HCV by screening a library of overlapping peptides covering E1E2. Screening the peptide library identified several novel anti-HCV peptides. Four peptides from glycoprotein E2 were selected for further investigation. The 50% effective dose (ED50) was approximately 5 nM for each peptide. Our data indicated that these peptides inhibited HCV entry at the post-attachment step. Moreover, these peptides blocked cell-to-cell transmission of HCVcc and had broad-spectrum antiviral effects on HCVcc. These peptides exhibited combination inhibitory effects on HCVcc infection when combined with IFN-α2b or anti-CD81 antibody. Interestingly, we observed that E2-42 associated with E1 and E2. Our results indicate that E2-42 inhibits HCV entry via E1 and E2. These findings suggest a new avenue for HCV therapeutic development.


Asunto(s)
Antivirales/farmacología , Hepacivirus/fisiología , Péptidos/farmacología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Internalización del Virus , Comunicación Celular , Línea Celular , Genotipo , Hepacivirus/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Acoplamiento Viral
17.
Sci Rep ; 5: 14302, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26394554

RESUMEN

Viruses evolve multiple ways to interfere with NF-κB signaling, a key regulator of innate and adaptive immunity. Enterovirus 71 (EV71) is one of primary pathogens that cause hand-foot-mouth disease. Here, we identify RelA(p65) as a novel binding partner for EV71 2C protein from yeast two-hybrid screen. By interaction with IPT domain of p65, 2C reduces the formation of heterodimer p65/p50, the predominant form of NF-κB. We also show that picornavirus 2C family proteins inhibit NF-κB activation and associate with p65 and IKKß. Our findings provide a novel mechanism how EV71 antagonizes innate immunity.


Asunto(s)
Proteínas Portadoras/metabolismo , Enterovirus Humano A/metabolismo , Evasión Inmune/inmunología , Subunidad p50 de NF-kappa B/metabolismo , Factor de Transcripción ReIA/metabolismo , Proteínas no Estructurales Virales/metabolismo , Sitios de Unión/genética , Línea Celular Tumoral , Activación Enzimática , Células HEK293 , Humanos , Quinasa I-kappa B/metabolismo , Evasión Inmune/fisiología , Unión Proteica/fisiología , Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
18.
Bing Du Xue Bao ; 30(5): 594-8, 2014 Sep.
Artículo en Zh | MEDLINE | ID: mdl-25562972

RESUMEN

Infection with the hepatitis C virus (HCV) frequently causes chronic viral hepatitis, a major risk factor for the development of cirrhosis and hepatocellular carcinoma or primary liver cancer. The origin of the HCV remains obscure because no closely related animal virus homolog has been identified. Also, efforts to understand the pathogenesis of the HCV have been hampered by the absence of small animal models for this human disease. Since 2011, with application of new sequencing technologies, various non-primate HCV homologs have been identified that will play an important part in understanding the origin and evolution of HCV, as well as establishment of related animal models.


Asunto(s)
Hepacivirus/genética , Hepatitis C/virología , Animales , Modelos Animales de Enfermedad , Hepatitis C/etiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA