Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473780

RESUMEN

Cancer immunotherapy is a type of cancer therapy utilizing the immune system to fight against tumors [...].


Asunto(s)
Inmunoterapia , Neoplasias
2.
Cancer Sci ; 114(1): 34-47, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36000926

RESUMEN

The current success of mRNA vaccines against COVID-19 has highlighted the effectiveness of mRNA and DNA vaccinations. Recently, we demonstrated that a novel needle-free pyro-drive jet injector (PJI) effectively delivers plasmid DNA into the skin, resulting in protein expression higher than that achieved with a needle syringe. Here, we used ovalbumin (OVA) as a model antigen to investigate the potential of the PJI for vaccination against cancers. Intradermal injection of OVA-expression plasmid DNA into mice using the PJI, but not a needle syringe, rapidly and greatly augmented OVA-specific CD8+ T-cell expansion in lymph node cells. Increased mRNA expression of both interferon-γ and interleukin-4 and an enhanced proliferative response of OVA-specific CD8+ T cells, with fewer CD4+ T cells, were also observed. OVA-specific in vivo killing of the target cells and OVA-specific antibody production of both the IgG2a and IgG1 antibody subclasses were greatly augmented. Intradermal injection of OVA-expression plasmid DNA using the PJI showed stronger prophylactic and therapeutic effects against the progression of transplantable OVA-expressing E.G7-OVA tumor cells. Even compared with the most frequently used adjuvants, complete Freund's adjuvant and aluminum hydroxide with OVA protein, intradermal injection of OVA-expression plasmid DNA using the PJI showed a stronger CTL-dependent prophylactic effect. These results suggest that the novel needle-free PJI is a promising tool for DNA vaccination, inducing both a prophylactic and a therapeutic effect against cancers, because of prompt and strong generation of OVA-specific CTLs and subsequently enhanced production of both the IgG2a and IgG1 antibody subclasses.


Asunto(s)
COVID-19 , Vacunas de ADN , Ratones , Humanos , Animales , Inyecciones Intradérmicas , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , Ovalbúmina , ADN , Inmunoglobulina G , Ratones Endogámicos C57BL
3.
Cancer Sci ; 114(6): 2499-2514, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36942841

RESUMEN

Cell transfer therapy using mesenchymal stem cells (MSCs) has pronounced therapeutic potential, but concerns remain about immune rejection, emboli formation, and promotion of tumor progression. Because the mode of action of MSCs highly relies on their paracrine effects through secretion of bioactive molecules, cell-free therapy using the conditioned medium (CM) of MSCs is an attractive option. However, the effects of MSC-CM on tumor progression have not been fully elucidated. Herein, we addressed this issue and investigated the possible underlying molecular mechanisms. The CM of MSCs derived from human bone marrow greatly inhibited the in vitro growth of several human tumor cell lines and the in vivo growth of the SCCVII murine squamous cell carcinoma cell line with reduced neovascularization. Exosomes in the MSC-CM were only partially involved in the inhibitory effects. The CM contained a variety of cytokines including insulin-like growth factor binding proteins (IGFBPs). Among them, IGFBP-4 greatly inhibited the in vitro growth of these tumors and angiogenesis, and immunodepletion of IGFBP-4 from the CM significantly reversed these effects. Of note, the CM greatly reduced the phosphorylation of AKT, ERK, IGF-1 receptor beta, and p38 MAPK in a partly IGFBP4-dependent manner, possibly through its binding to IGF-1/2 and blocking the signaling. The CM depleted of IGFBP-4 also reversed the inhibitory effects on in vivo tumor growth and neovascularization. Thus, MSC-CM has potent inhibitory effects on tumor growth and neovascularization in an IGFBP4-dependent manner, suggesting that cell-free therapy using MSC-CM could be a safer promising alternative for even cancer patients.


Asunto(s)
Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/farmacología , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Neovascularización Patológica/metabolismo
4.
Altern Lab Anim ; 51(6): 387-400, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37796587

RESUMEN

Chemical respiratory sensitisation is a serious health problem. However, to date, there are no validated test methods available for identifying respiratory sensitisers. The aim of this study was to develop an in vitro sensitisation test by modifying the human cell line activation test (h-CLAT) to detect respiratory sensitisers and distinguish them from skin sensitisers. THP-1 cells were exposed to the test chemicals (two skin sensitisers and six respiratory sensitisers), either as monocultures or as cocultures with air-liquid interface-cultured reconstructed human bronchial epithelium. The responses were analysed by measuring the expression levels of surface markers on THP-1 cells (CD86, CD54 and OX40L) and the concentrations of cytokines in the culture media (interleukin (IL)-8, IL-33 and thymic stromal lymphopoietin (TSLP)). The cocultures exhibited increased CD54 expression on THP-1 cells; moreover, in the cocultures but not in the monocultures, exposure to two uronium salts (i.e. respiratory sensitisers) increased CD54 expression on THP-1 cells to levels above the criteria for a positive h-CLAT result. Additionally, exposure to the respiratory sensitiser abietic acid, significantly increased IL-8 concentration in the culture medium, but only in the cocultures. Although further optimisation of the method is needed to distinguish respiratory from skin sensitisers by using these potential markers (OX40L, IL-33 and TSLP), the coculture of THP-1 cells with bronchial epithelial cells offers a potentially useful approach for the detection of respiratory sensitisers.


Asunto(s)
Alérgenos , Interleucina-33 , Humanos , Técnicas de Cocultivo , Piel , Epitelio , Citocinas
5.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240448

RESUMEN

Current worldwide mRNA vaccination against SARS-CoV-2 by intramuscular injection using a needled syringe has greatly protected numerous people from COVID-19. An intramuscular injection is generally well tolerated, safer and easier to perform on a large scale, whereas the skin has the benefit of the presence of numerous immune cells, such as professional antigen-presenting dendritic cells. Therefore, intradermal injection is considered superior to intramuscular injection for the induction of protective immunity, but more proficiency is required for the injection. To improve these issues, several different types of more versatile jet injectors have been developed to deliver DNAs, proteins or drugs by high jet velocity through the skin without a needle. Among them, a new needle-free pyro-drive jet injector has a unique characteristic that utilizes gunpower as a mechanical driving force, in particular, bi-phasic pyrotechnics to provoke high jet velocity and consequently the wide dispersion of the injected DNA solution in the skin. A significant amount of evidence has revealed that it is highly effective as a vaccinating tool to induce potent protective cellular and humoral immunity against cancers and infectious diseases. This is presumably explained by the fact that shear stress generated by the high jet velocity facilitates the uptake of DNA in the cells and, consequently, its protein expression. The shear stress also possibly elicits danger signals which, together with the plasmid DNA, subsequently induces the activation of innate immunity including dendritic cell maturation, leading to the establishment of adaptive immunity. This review summarizes the recent advances in needle-free jet injectors to augment the cellular and humoral immunity by intradermal injection and the possible mechanism of action.


Asunto(s)
COVID-19 , Humanos , Inyecciones Intradérmicas , Inyecciones a Chorro , COVID-19/prevención & control , SARS-CoV-2 , Inyecciones Intramusculares
6.
Int Wound J ; 19(5): 1102-1110, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34699134

RESUMEN

To clarify the effect of collagen addition to transplanted adipose tissue on angiogenesis, cell proliferation and tissue remodelling process and reveal whether collagen addition contributes to improving transplanted adipose tissue engraftment in rats. Adipose tissue was harvested from the inguinal and injected into the back of the rat, in addition to collagen. Engraftment tissue was harvested, semi-quantitatively evaluated and underwent haematoxylin and eosin or Perilipin staining. Moreover, we evaluated viable adipocyte counts and neovascularisation. Macrophages were evaluated using flow cytometry, and the adiponectin or vascular endothelial growth factor (VEGF) mRNA was detected using real-time polymerase chain reaction. By collagen addition to transplanted adipose tissue, higher engraftment rate semi-quantitatively and a greater number of new blood vessels histologically were identified. Perilipin staining revealed a higher adipocyte number. The total cell, M1 macrophage and M2 macrophage count were higher. There was increased adiponectin mRNA significantly at week 4 compared to that at week 1 after transplantation. Note that the expression levels of VEGF mRNA increased. In rats, adding collagen enhanced cell proliferation, induced M2 macrophages, which are involved in wound healing, and promoted adipocytes and neovascularisation. Therefore, collagen addition to transplanted adipose tissue could increase the engraftment rate of adipose tissue.


Asunto(s)
Adiponectina , Factor A de Crecimiento Endotelial Vascular , Adiponectina/metabolismo , Tejido Adiposo/patología , Animales , Proliferación Celular , Colágeno/metabolismo , Macrófagos/metabolismo , Perilipinas/metabolismo , ARN Mensajero/metabolismo , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
EMBO J ; 36(16): 2390-2403, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28673932

RESUMEN

Hematopoietic homeostasis depends on the maintenance of hematopoietic stem cells (HSCs), which are regulated within a specialized bone marrow (BM) niche. When HSC sense external stimuli, their adhesion status may be critical for determining HSC cell fate. The cell surface molecule, integrin αvß3, is activated through HSC adhesion to extracellular matrix and niche cells. Integrin ß3 signaling maintains HSCs within the niche. Here, we showed the synergistic negative regulation of the pro-inflammatory cytokine interferon-γ (IFNγ) and ß3 integrin signaling in murine HSC function by a novel definitive phenotyping of HSCs. Integrin αvß3 suppressed HSC function in the presence of IFNγ and impaired integrin ß3 signaling mitigated IFNγ-dependent negative action on HSCs. During IFNγ stimulation, integrin ß3 signaling enhanced STAT1-mediated gene expression via serine phosphorylation. These findings show that integrin ß3 signaling intensifies the suppressive effect of IFNγ on HSCs, which indicates that cell adhesion via integrin αvß3 within the BM niche acts as a context-dependent signal modulator to regulate the HSC function under both steady-state and inflammatory conditions.


Asunto(s)
Proliferación Celular , Células Madre Hematopoyéticas/fisiología , Integrina alfaVbeta3/metabolismo , Interferón gamma/metabolismo , Animales , Regulación de la Expresión Génica , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Factor de Transcripción STAT1/metabolismo , Transducción de Señal
8.
Cell Mol Life Sci ; 75(8): 1363-1376, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29218601

RESUMEN

Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Neoplasias Hematológicas/inmunología , Malaria/inmunología , Mielopoyesis/inmunología , Neutrófilos/inmunología , Animales , Ciclo Celular/genética , Ciclo Celular/inmunología , Diferenciación Celular , Proliferación Celular , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/inmunología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Humanos , Interferones/genética , Interferones/inmunología , Interleucina-1/genética , Interleucina-1/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Interleucinas/genética , Interleucinas/inmunología , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/inmunología , Malaria/genética , Malaria/parasitología , Malaria/patología , Ratones , Células Progenitoras Mieloides/inmunología , Células Progenitoras Mieloides/parasitología , Células Progenitoras Mieloides/patología , Mielopoyesis/genética , Neutrófilos/parasitología , Neutrófilos/patología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/inmunología
9.
PLoS Pathog ; 12(3): e1005507, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26991425

RESUMEN

Emergency myelopoiesis is inflammation-induced hematopoiesis to replenish myeloid cells in the periphery, which is critical to control the infection with pathogens. Previously, pro-inflammatory cytokines such as interferon (IFN)-α and IFN-γ were demonstrated to play a critical role in the expansion of hematopoietic stem cells (HSCs) and myeloid progenitors, leading to production of mature myeloid cells, although their inhibitory effects on hematopoiesis were also reported. Therefore, the molecular mechanism of emergency myelopoiesis during infection remains incompletely understood. Here, we clarify that one of the interleukin (IL)-6/IL-12 family cytokines, IL-27, plays an important role in the emergency myelopoiesis. Among various types of hematopoietic cells in bone marrow, IL-27 predominantly and continuously promoted the expansion of only Lineage-Sca-1+c-Kit+ (LSK) cells, especially long-term repopulating HSCs and myeloid-restricted progenitor cells with long-term repopulating activity, and the differentiation into myeloid progenitors in synergy with stem cell factor. These progenitors expressed myeloid transcription factors such as Spi1, Gfi1, and Cebpa/b through activation of signal transducer and activator of transcription 1 and 3, and had enhanced potential to differentiate into migratory dendritic cells (DCs), neutrophils, and mast cells, and less so into macrophages, and basophils, but not into plasmacytoid DCs, conventional DCs, T cells, and B cells. Among various cytokines, IL-27 in synergy with the stem cell factor had the strongest ability to augment the expansion of LSK cells and their differentiation into myeloid progenitors retaining the LSK phenotype over a long period of time. The experiments using mice deficient for one of IL-27 receptor subunits, WSX-1, and IFN-γ revealed that the blood stage of malaria infection enhanced IL-27 expression through IFN-γ production, and the IL-27 then promoted the expansion of LSK cells, differentiating and mobilizing them into spleen, resulting in enhanced production of neutrophils to control the infection. Thus, IL-27 is one of the limited unique cytokines directly acting on HSCs to promote differentiation into myeloid progenitors during emergency myelopoiesis.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/fisiología , Interleucinas/metabolismo , Mielopoyesis/fisiología , Animales , Linfocitos B/efectos de los fármacos , Médula Ósea/fisiología , Diferenciación Celular , Linaje de la Célula , Citocinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Mieloides/fisiología , Células Progenitoras Mieloides/fisiología , Transducción de Señal , Bazo/fisiología
10.
Cancer Sci ; 107(9): 1206-14, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27384869

RESUMEN

Although it has been suspected that inflammation is associated with increased tumor metastasis, the exact type of immune response required to initiate cancer progression and metastasis remains unknown. In this study, by using an in vivo tumor progression model in which low tumorigenic cancer cells acquire malignant metastatic phenotype after exposure to inflammation, we found that IL-17A is a critical cue for escalating cancer cell malignancy. We further demonstrated that the length of exposure to an inflammatory microenvironment could be associated with acquiring greater tumorigenicity and that IL-17A was critical for amplifying such local inflammation, as observed in the production of IL-1ß and neutrophil infiltration following the cross-talk between cancer and host stromal cells. We further determined that γδT cells expressing Vδ1 semi-invariant TCR initiate cancer-promoting inflammation by producing IL-17A in an MyD88/IL-23-dependent manner. Finally, we identified CD30 as a key molecule in the inflammatory function of Vδ1T cells and the blockade of this pathway targeted this cancer immune-escalation process. Collectively, these results reveal the importance of IL-17A-producing CD30(+) Vδ1T cells in triggering inflammation and orchestrating a microenvironment leading to cancer progression.


Asunto(s)
Inflamación/inmunología , Inflamación/metabolismo , Interleucina-17/biosíntesis , Antígeno Ki-1/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Inmunidad , Inflamación/complicaciones , Ratones , Ratones Noqueados , Modelos Biológicos , Neoplasias/patología , Microambiente Tumoral/inmunología
11.
Cancer Sci ; 106(9): 1103-10, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26132605

RESUMEN

Cancer immunotherapies such as sipuleucel-T and ipilimumab are promising new treatments that harness the power of the immune system to fight cancer and achieve long-lasting remission. Interleukin (IL)-27, a member of the IL-12 heterodimeric cytokine family, has pleiotropic functions in the regulation of immune responses with both pro-inflammatory and anti-inflammatory properties. Evidence obtained using a variety of preclinical mouse models indicates that IL-27 possesses potent antitumor activity against various types of tumors through multiple mechanisms without apparent adverse effects. These mechanisms include those mediated not only by CD8(+) T cells, natural killer cells and macrophages, but also by antibody-dependent cell-mediated cytotoxicity, antiangiogenesis, direct antiproliferative effects, inhibition of expression of cyclooxygenase-2 and prostaglandin E2 , and suppression of epithelial-mesenchymal transition, depending on the characteristics of individual tumors. However, the endogenous role of IL-27 subunits and one of its receptor subunits, WSX-1, in the susceptibility to tumor development after transplantation of tumor cell lines or endogenously arising tumors seems to be more complicated. IL-27 functions as a double-edged sword: IL-27 increases IL-10 production and the expression of programmed death ligand 1 and T-cell immunoglobulin and mucin domain-3, and promotes the generation of regulatory T cells, and IL-27 receptor α singling enhances transformation; IL-27 may augment protumor effects as well. Here, we review both facets of IL-27, antitumor effects and protumor effects, and discuss the potential clinical application of IL-27 as an antitumor agent.


Asunto(s)
Antineoplásicos/inmunología , Interleucina-27/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Animales , Humanos , Inmunoterapia/métodos
12.
J Immunol ; 189(7): 3641-52, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22942422

RESUMEN

IL-17A, IL-17F, and IL-25 are ligands for IL-17RA. In the current study, we demonstrated that IL-25-deficient mice-but not IL-17A-, IL-17F-, IL-17A/F-, IL-23p19-, or retinoic acid-related orphan receptor (ROR)-γt-deficient mice-showed significant suppression of 1) the number of eosinophils and the levels of proinflammatory mediators in bronchoalveolar lavage fluids, 2) airway hyperresponsiveness to methacholine, and 3) OVA-specific IgG1 and IgE levels in the serum during OVA-induced Th2-type/eosinophilic airway inflammation. The IL-25 deficiency did not affect lung dendritic cell migration or Ag-specific memory-Th2 cell expansion during Ag sensitization. Adoptive transfer of T cells, mast cells, or bone marrow cells from IL-25-deficient mice revealed that induction of Th2-type/eosinophilic airway inflammation was dependent on activation of lung epithelial cells and eosinophils by IL-25 produced by airway structural cells such as epithelial cells but not by such hematopoietic stem-cell-origin immune cells as T cells and mast cells. Therefore, airway structural cell-derived IL-25-rather than Th17 cell-derived IL-17A and IL-17F-is responsible for induction of local inflammation by promoting activation of lung epithelial cells and eosinophils in the elicitation phase of Th2-type/eosinophilic airway inflammation. It is not required for Ag-specific Th2 cell differentiation in the sensitization phase.


Asunto(s)
Asma/inmunología , Células Epiteliales/inmunología , Mediadores de Inflamación/fisiología , Interleucina-17/fisiología , Interleucinas/fisiología , Células Th17/inmunología , Animales , Asma/metabolismo , Asma/patología , Diferenciación Celular/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Eosinofilia/inmunología , Eosinofilia/metabolismo , Eosinofilia/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Interleucina-17/biosíntesis , Interleucina-17/deficiencia , Interleucinas/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Th17/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Células Th2/patología
13.
Cancer Sci ; 104(9): 1146-53, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23758044

RESUMEN

A number of CML patients who achieve a sustained complete molecular response (CMR) for at least 2 years during imatinib (IM) therapy can discontinue IM without relapse. With the long-term goal of developing immunological criteria for managing IM therapy in CML patients, we compared the immunophenotypic profiles of three groups of CML patients: those who received IM and had a CMR for more than two consecutive years (CMR group); patients who received IM and did not have a sustained CMR but maintained a major molecular response for more than 2 years (fluctuating CMR group); and patients with a sustained CMR for more than 6 months after IM discontinuation (STOP-IM group), together with healthy controls. The percentages of effector populations of natural killer (NK) cells, such as interferon (IFN)-γ(+) CD3(-) CD56(+) cells, were significantly higher in the STOP-IM and CMR groups than in the fluctuating CMR and control groups. The elevated levels of these effector NK cells were sustained for more than 3 years after IM discontinuation. In contrast, the percentages of effector memory CD8(+) T cells, such as IFN-γ(+) CCR7(-) CD45RO(+) CD8(+) cells, were significantly higher in the STOP-IM and control groups than in the CMR and fluctuating CMR groups, possibly owing to IM intake. These results suggest that the immunological activation status of NK cells contributes to CMR maintenance. Higher activation levels of effector NK cells in CML patients being treated with IM might reflect minimization of BCR-ABL1 transcript levels and therefore could be additive information for determining whether to stop IM.


Asunto(s)
Benzamidas/uso terapéutico , Células Asesinas Naturales/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Piperazinas/uso terapéutico , Pirimidinas/uso terapéutico , Linfocitos T CD8-positivos/metabolismo , Femenino , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Resultado del Tratamiento , Regulación hacia Arriba
14.
Clin Dev Immunol ; 2013: 968549, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23956763

RESUMEN

T-helper 17 (Th17) cells are characterized by producing interleukin-17 (IL-17, also called IL-17A), IL-17F, IL-21, and IL-22 and potentially TNF- α and IL-6 upon certain stimulation. IL-23, which promotes Th17 cell development, as well as IL-17 and IL-22 produced by the Th17 cells plays essential roles in various inflammatory diseases, such as experimental autoimmune encephalomyelitis, rheumatoid arthritis, colitis, and Concanavalin A-induced hepatitis. In this review, we summarize the characteristics of the functional role of Th17 cells, with particular focus on the Th17 cell-related cytokines such as IL-17, IL-22, and IL-23, in mouse models and human inflammatory diseases.


Asunto(s)
Citocinas/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Animales , Humanos , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Interleucinas/metabolismo , Interleucina-22
15.
Proc Natl Acad Sci U S A ; 107(13): 5943-8, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20231432

RESUMEN

CD4(+) helper T (Th) cells differentiate toward distinct effector cell lineages characterized by their distinct cytokine expression patterns and functions. Multiple Th cell populations secrete IL-22 that contributes to both protective and pathological inflammatory responses. Although the differentiation of IL-22-producing Th cells is controlled by the aryl hydrocarbon receptor (AhR), little is known about the regulatory mechanisms inducing physiological stimulators for AhR. Here, we show that Notch signaling enhances IL-22 production by CD4(+) T cells by a mechanism involving AhR stimulation. Notch-mediated stimulation of CD4(+) T cells increased the production of IL-22 even in the absence of STAT3. CD4(+) T cells from RBP-J-deficient mice had little ability to produce IL-22 through T cell receptor-mediated stimulation. RBP-J-deficient mice were highly susceptible to the detrimental immunopathology associated with ConA-induced hepatitis with little IL-22 production by CD4(+) T cells. Exogenous IL-22 protected RBP-J-deficient mice from ConA-induced hepatitis. Notch signaling promoted production of endogenous stimulators for AhR, which further augmented IL-22 secretion. Our studies identify a Notch-AhR axis that regulates IL-22 expression and fine-tunes immune system control of inflammatory responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Interleucinas/biosíntesis , Receptores de Hidrocarburo de Aril/metabolismo , Receptores Notch/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Diferenciación Celular , Femenino , Hepatitis Animal/etiología , Hepatitis Animal/inmunología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/deficiencia , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Estructura Terciaria de Proteína , Receptores Notch/química , Receptores Notch/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factor de Transcripción STAT3/deficiencia , Factor de Transcripción STAT3/genética , Transducción de Señal , Interleucina-22
16.
J Med Case Rep ; 17(1): 190, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158934

RESUMEN

BACKGROUND: The prognosis for recurrence cases of hormone receptor-positive HER2-negative breast cancer remains poor, and treatment strategies that emphasize quality of life have often been chosen, with few physicians aiming for a cure. Our objective is to assess the validity of such current treatment strategies. CASE PRESENTATION: A 74-year-old Asian woman with multiple lung and liver metastases after local recurrence of breast cancer was treated with two different cyclin-dependent kinases 4/6 inhibitors sequentially in combination with endocrine therapy. Flow cytometric analysis of the patient's peripheral blood mononuclear cells was also performed to evaluate the host's immune status. Complete remission was achieved without cytotoxic agents and the patient remains disease free to this day, 6 years after the initial relapse. Additionally, no increase in the population of the immunosenescent T cells with a phenotype of CD8+CD28- was observed in the patient's peripheral blood mononuclear cells, suggesting that the immune system was well maintained. CONCLUSIONS: We present this case study to develop new treatment strategies for recurrent breast cancer that is not only bound to misinterpretations of the Hortobagyi algorithm, but also aim for a cure with noncytotoxic agents to maintain the host's immune system and early detection of recurrence.


Asunto(s)
Neoplasias de la Mama , Leucocitos Mononucleares , Humanos , Femenino , Calidad de Vida , Neoplasias de la Mama/tratamiento farmacológico , Enfermedad Crónica , Recurrencia , Ciclinas
17.
ALTEX ; 40(2): 204-216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35229878

RESUMEN

Although several in vitro assays that predict the sensitizing potential of chemicals have been developed, none can distinguish between chemical respiratory and skin sensitizers. Recently, we established a new three-dimensional dendritic cell (DC) coculture system consisting of a human airway epithelial cell line, immature DCs derived from human peripheral monocytes, and a human lung fibroblast cell line. In this coculture system, compared to skin sensitizers, respiratory sensitizers showed enhanced mRNA expression in DCs of the key costimulatory molecule OX40 ligand (OX40L), which is important for T helper 2 (Th2) cell differentiation. Herein, we established a new two-step DC/T cell coculture system by adding peripheral allogeneic naïve CD4+ T cells to the DCs stimulated in the DC coculture system. In this DC/T cell coculture system, model respiratory sensitizers, but not skin sensitizers, enhanced mRNA expression of the predominant Th2 marker interleukin-4 (IL-4). To improve the versatility, in place of peripheral monocytes, monocyte-derived proliferating cells called CD14-ML were used in the DC coculture system. As in peripheral monocytes, enhanced mRNA expression of OX40L was induced in CD14-ML by respiratory sensitizers compared to skin sensitizers. When these cell lines were applied to the DC/T cell coculture system with peripheral allogeneic naïve CD4+ T cells, respiratory sensitizers but not skin sensitizers enhanced the mRNA expression of IL-4. Thus, this DC/T cell coculture system may be useful for discriminating between respiratory and skin sensitizers by differential mRNA upregulation of IL-4 in T cells.


Asunto(s)
Técnicas de Cocultivo , Interleucina-4 , Células Th2 , Humanos , Diferenciación Celular , Células Cultivadas , Células Dendríticas , Interleucina-4/metabolismo , Interleucina-4/farmacología , Monocitos , ARN Mensajero/metabolismo , Células Th2/metabolismo
18.
Biology (Basel) ; 12(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36671815

RESUMEN

Haptens are small molecules that only elicit an immune response when bound to proteins. Haptens initially bind to self-proteins and activate innate immune responses by complex mechanisms via inflammatory cytokines and damage-associated molecular patterns and the subsequent upregulation of costimulatory signals such as cluster of differentiation 86 (CD86) on dendritic cells. Subsequent interactions between CD86 and CD28 on T cells are critically important for properly activating naive T cells and inducing interleukin 2 production, leading to the establishment of adaptive immunity via effector and memory T cells. Accumulating evidence revealed the involvement of haptens in the development of various autoimmune-like diseases such as allergic, inflammatory, and autoimmune diseases including allergic contact dermatitis, atopy, asthma, food allergy, inflammatory bowel diseases, hemolytic anemia, liver injury, leukoderma, and even antitumor immunity. Therefore, the development of in vitro testing alternatives to evaluate in advance whether a substance might lead to the development of these diseases is highly desirable. This review summarizes and discusses recent advances in chemical- and drug-induced allergic, inflammatory, and autoimmune diseases via haptenation and the possible molecular underlying mechanisms, as well as in vitro testing alternatives to evaluate in advance whether a substance might cause the development of these diseases.

19.
Cancer Sci ; 103(4): 821-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22320903

RESUMEN

Paclitaxel (also known as taxol) is a member of the taxane class of anticancer agents, which has a well-known mechanism that blocks cell mitosis and kills tumor cells, that is often used in clinics to treat cancer. However, some carcinomas such as breast, ovarian and non-small-cell lung cancers are often resistant to paclitaxel treatment. In this study, we used a lentiviral siRNA library against the entire human genomes to identify genes associated with sensitivity to paclitaxel. We isolated two paclitaxel-resistant clones carrying the siRNA specific to septin 10 (SEPT10) and to budding uninhibited by benzimidazoles 3. The relation of budding uninhibited by benzimidazoles 3 to paclitaxel sensitivity has already been established, but that of SEPT10 remains unknown. Interestingly, overexpression of SEPT10 increased cells' sensitivity to paclitaxel; we also found that SEPT10 is an important regulator for microtubule stability. Furthermore, we found that paclitaxel-resistant tumors had decreased expression of SEPT10. Thus, SEPT10 may be a novel candidate molecule that acts as a good indicator of paclitaxel-resistant carcinomas.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Resistencia a Antineoplásicos , Neoplasias/genética , Paclitaxel/uso terapéutico , Septinas/fisiología , Bencimidazoles/farmacología , Caspasa 3/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Neoplasias/tratamiento farmacológico , Proteínas de Unión a Poli-ADP-Ribosa , Septinas/genética
20.
Eur J Immunol ; 41(10): 2828-39, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21953641

RESUMEN

IL-23 plays a critical role in the expansion of highly proinflammatory Th17 cells secreting IL-17 and IL-22. Recently, we demonstrated that Notch signaling drives IL-22 secretion through the aryl hydrocarbon receptor (AHR) and plays a protective role in Con A-induced hepatitis. In this study, we investigated the role of IL-23 in hepatitis using IL-23p19- and IL-17-deficient mice. In WT mice, the injection of Con A induced the upregulation of various cytokines, which included IL-23, IL-22, IL-17, IFN-γ and TNF-α. In IL-23p19-deficient mice, exacerbated hepatitis was observed and serum IL-22 and IL-17 levels were greatly reduced, whereas in IL-17-deficient mice, ameliorated hepatitis was observed. The injection of exogenous IL-22 protected p19-deficient mice from hepatitis, whereas the injection of exogenous IL-23 significantly increased the serum levels of not only IL-22 but also IL-17, and less effectively protected against hepatitis in IL-17-dependent and -independent manners. Finally, it was revealed that STAT3, STAT4 and Notch contributed to the production of both the cytokines, and that the AHR was important only for IL-22 production in response to Con A and IL-23 in liver mononuclear cells. These results suggest that IL-23 plays a protective role in hepatitis through IL-22 production and also a pathological role via IL-17-dependent and -independent mechanisms.


Asunto(s)
Hepatitis Animal/inmunología , Hepatitis Animal/metabolismo , Interleucina-17/metabolismo , Subunidad p19 de la Interleucina-23/metabolismo , Interleucina-23 , Interleucinas/metabolismo , Animales , Concanavalina A , Citocinas/biosíntesis , Interleucina-17/sangre , Interleucina-17/genética , Interleucina-23/administración & dosificación , Interleucina-23/biosíntesis , Interleucina-23/metabolismo , Interleucina-23/farmacología , Subunidad p19 de la Interleucina-23/genética , Interleucinas/administración & dosificación , Interleucinas/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Hidrocarburo de Aril/metabolismo , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT4/metabolismo , Transducción de Señal/efectos de los fármacos , Células Th17/inmunología , Células Th17/metabolismo , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA