Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Behav Immun ; 122: 604-616, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39187048

RESUMEN

The prevalence of bacterial infections significantly increases among patients with severe traumatic brain injury (STBI), leading to a notable rise in mortality rates. While immune dysfunctions are linked to the incidence of pneumonia, our observations indicate that endogenous pathogens manifest in the lungs post-STBI due to the migration of gut commensal bacteria. This translocation involves gut-innervating nociceptor sensory neurons, which are crucial for host defense. Following STBI, the expression of transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglion (DRG) neurons significantly decreases, despite an initial brief increase. The timing of TRPV1 defects coincides with the occurrence of pulmonary infections post-STBI. This alteration in TRPV1+ neurons diminishes their ability to signal bacterial injuries, weakens defense mechanisms against intestinal bacteria, and increases susceptibility to pulmonary infections via bacterial translocation. Experimental evidence demonstrates that pulmonary infections can be successfully replicated through the chemical ablation and gene interference of TRPV1+ nociceptors, and that these infections can be mitigated by TRPV1 activation, thereby confirming the crucial role of nociceptor neurons in controlling intestinal bacterial migration. Furthermore, TRPV1+ nociceptors regulate the immune response of microfold cells by releasing calcitonin gene-related peptide (CGRP), thereby influencing the translocation of gut bacteria to the lungs. Our study elucidates how changes in nociceptive neurons post-STBI impact intestinal pathogen defense. This new understanding of endogenous risk factors within STBI pathology offers novel insights for preventing and treating pulmonary infections.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Nociceptores , Canales Catiónicos TRPV , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/microbiología , Canales Catiónicos TRPV/metabolismo , Nociceptores/metabolismo , Ratones , Masculino , Ganglios Espinales/metabolismo , Traslocación Bacteriana , Intestinos/microbiología , Ratones Endogámicos C57BL , Microbioma Gastrointestinal/fisiología , Pulmón/metabolismo , Pulmón/microbiología
2.
Langenbecks Arch Surg ; 409(1): 168, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38819706

RESUMEN

PURPOSE: To evaluate the safety and efficacy of two-step vascular exclusion and in situ hypothermic portal perfusion in patients with end-stage hepatic hydatidosis. METHODS: This study involved patients with advanced hepatic hydatid disease undergoing surgical treatment between 2022 and 2023, which included resection and reconstruction of the hepatic veins, inferior vena cava (IVC), and portal vein (PV). We described the technical details of liver resection and vascular reconstruction, as well as the use of two-step vascular exclusion and in situ hypothermic portal perfusion techniques during the vascular reconstruction process. RESULT: We included 7 patients with advanced hepatic hydatid disease who underwent surgical resection using two-step vascular exclusion and in situ hypothermic portal perfusion. The mean duration of surgery was 12.5 h (range, 7.5-15.0 h). The average hepatic ischemia time was 45 min (range, 25-77 min), while the occlusion time of the IVC was 87 min (range, 72-105 min). The total blood loss was 1000 milliliters (range, 500-1250 milliliters). Postoperatively, patients exhibited good recovery of liver and renal function. The mean ICU stay was 2 days (range, 1-3 days), and the mean postoperative hospital stay was 13 days (range, 9-16 days), with no Grade III or above complications observed during a mean follow-up period of 15 months (range, 9-24 months), CONCLUSION: two-step vascular exclusion and in situ hypothermic portal perfusion for surgical resection of end-stage hepatic hydatid disease is safe and effective. This significantly reduces the anhepatic time.


Asunto(s)
Equinococosis Hepática , Hepatectomía , Vena Porta , Vena Cava Inferior , Humanos , Equinococosis Hepática/cirugía , Equinococosis Hepática/diagnóstico por imagen , Masculino , Femenino , Hepatectomía/métodos , Adulto , Persona de Mediana Edad , Vena Porta/cirugía , Vena Cava Inferior/cirugía , Hipotermia Inducida , Resultado del Tratamiento , Perfusión/métodos , Estudios Retrospectivos , Venas Hepáticas/cirugía , Anciano
3.
J Dairy Sci ; 107(7): 4161-4173, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38246556

RESUMEN

Whey protein isolate (WPI)-based nanodelivery systems have recently attracted an increasing amount of attention. Despite this, research focusing on milk protein concentrate (MPC) and micellar casein (MCC) as carriers loaded in hydrophobic compounds is lacking. This study investigated the mediated effect of docosahexaenoic acid (DHA) in 3 different milk proteins for the embedding of astaxanthin (ASTA) after ultrasound-assisted pH-shifting treatment. We then evaluated the application of milk protein carriers in cheese processing by comparing MPC, MCC, and WPI. The particle size, polydispersity index, and zeta potential results of the milk protein-DHA complex suggested that the addition of 0.36 µmol/mL DHA optimized the delivery of milk protein to ASTA. All 3 DHA-mediated milk proteins induced an improvement in encapsulation efficiency and antioxidant properties of ASTA. Furthermore, the DHA-mediated MPC and MCC played a stronger role in improving the bioaccessibility and thermal and storage stability of ASTA than those without DHA. Tests conducted to examine the application in cheese production indicated that MCC carrier had a positive effect on the texture of cheeses. However, the delivery effect was dependent on the milk protein variety, and MCC exhibited the best protection ability of ASTA, followed by MPC and WPI. The simulated digestion and storage stability results of cheese further confirmed that the protein encapsulation mediated by DHA was more conducive to ASTA absorption. These findings suggested that the DHA-mediated milk protein complexes studied here may be suitable hydrophilic delivery carriers for the hydrophobic nutrient ASTA, potentially playing different roles in improving its storage stability and bioaccessibility.


Asunto(s)
Queso , Ácidos Docosahexaenoicos , Proteínas de la Leche , Xantófilas , Animales , Concentración de Iones de Hidrógeno , Proteína de Suero de Leche , Caseínas
4.
Angew Chem Int Ed Engl ; 63(43): e202411197, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-38935406

RESUMEN

The zeolite-catalyzed methanol-to-aromatics (MTA) process is a promising avenue for industrial decarbonization. This process predominantly utilizes 3-dimensional 10-member ring (10-MR) zeolites like ZSM-5 and ZSM-11, chosen for their confinement effect essential for aromatization. Current research mainly focuses on enhancing selectivity and mitigating catalyst deactivation by modulating zeolites' physicochemical properties. Despite the potential, the MTA technology is at a low Technology Readiness Level, hindered by mechanistic complexities in achieving the desired selectivity towards liquid aromatics. To bridge this knowledge gap, this study proposes a roadmap for MTA catalysis by strategically combining controlled catalytic experiments with advanced characterization methods (including operando conditions and "mobility-dependent" solid-state NMR spectroscopy). It identifies the descriptor-role of Koch-carbonylated intermediates, longer-chain hydrocarbons, and the zeolites' intersectional cavities in yielding preferential liquid aromatics selectivity. Understanding these selectivity descriptors and architectural impacts is vital, potentially advancing other zeolite-catalyzed emerging technologies.

5.
Angew Chem Int Ed Engl ; : e202414724, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39438258

RESUMEN

Understanding the mechanistic intricacies of hydrothermally treated zeolite is crucial for valorizing any oxygen-containing renewable feedstocks (e.g., methanol, carbon dioxide, biomass). Additionally, the regeneration of deactivated zeolite catalysts under oxidative conditions, akin to hydrothermal treatment, is essential in industrial processes. While research in this area has predominantly focused on characterizing steaming-induced physicochemical changes in zeolite, their ultimate impact on the organic reaction mechanism governed by the hydrocarbon pool dual-cycle mechanism remains unclear. To bridge this knowledge gap, this study investigates the effect of steamed zeolite on the organic reaction mechanism during the industrially significant methanol-to-hydrocarbons process. We achieved this objective by strategically integrating catalytic and control experiments over the pristine and steamed zeolites and their advanced characterization, including under operando conditions, XRD structural refinement, and using "mobility-dependent" solid-state NMR spectroscopy. This multimodal characterization approach was instrumental in elucidating elusive mechanistic information in the dual-cycle mechanism, shedding light on phenomena such as the unchanged ethylene selectivity despite decreasing aromatics selectivity, while ethylene could solely be derived from arene-based reaction intermediates. This study could improve the process efficiency in zeolite catalysis by connecting steaming-induced changes in the organic reaction mechanisms with inorganic material aspects.

6.
J Am Chem Soc ; 143(24): 8993-9001, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34106720

RESUMEN

The enantioselective synthesis of axially chiral biaryls by a copper-catalyzed Diels-Alder/retro-Diels-Alder reaction of 2-pyrones with alkynes is reported herein. Using electron-deficient 2-pyrones and electron-rich 1-naphthyl acetylenes as the reaction partners, a broad range of axially chiral biaryl esters are obtained in excellent yields (up to 97% yield) and enantioselectivities (up to >99% ee). DFT calculations reveal the reaction mechanism and provide insights into the origins of the stereoselectivities. The practicality and robustness of this reaction are showcased by gram-scale synthesis. The synthetic utilizations are demonstrated by the amenable transformations of the products.

10.
J Microencapsul ; 34(6): 513-521, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28705043

RESUMEN

Mannose receptor (MR) is a highly effective endocytic receptor. It is closely related to tumour immune escape and metastasis. We found that MR was highly expressed in some colon cancer cell lines such as CT26 and HCT116 cells. Therefore, MR might be a potential target in colon cancer therapy. In this study, we aimed to develop mannosylated liposomes containing anticancer drug paclitaxel and investigate the potential effects on targeted therapy for colon cancer. Mannosylated liposomes were prepared by film dispersion method. Characterisation, drug release behaviour, cytotoxicity, cellular uptake, anti-tumour efficacy and safety profiles of liposomes were investigated. The results showed that mannosylated liposomes had a higher CT26 cells uptake efficiency and tumour inhibition rate, which might be due to the target effect to MR. And no notable toxicity was observed. Taken together, these data demonstrated that mannosylated liposomes could target colon cancer and improve the efficacy of chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Lectinas Tipo C/metabolismo , Liposomas/química , Lectinas de Unión a Manosa/metabolismo , Manosa/metabolismo , Paclitaxel/administración & dosificación , Receptores de Superficie Celular/metabolismo , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Receptor de Manosa , Ratones , Ratones Endogámicos BALB C
11.
Bioorg Med Chem Lett ; 26(15): 3669-74, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27289321

RESUMEN

The emergence of antibiotic resistant pathogens is an ongoing main problem in the therapy of bacterial infections. In order to develop promising antitubercular and antibacterial lead compounds, we designed and synthesized a new series of derivatives of 2-aminothiazole conjugated nitrofuran with activities against both Mycobacterium tuberculosis and Staphylococcus aureus. Eight compounds 12e, 12k, 12l, 12m, 18a, 18d, 18e, and 18j emerged as promising antitubercular agents. Structure-activity relationships (SARs) were discussed and showed that the derivatives substituted at the position-3 of benzene of 5-nitro-N-(4-phenylthiazol-2-yl)furan-2-carboxamide exhibited superior potency. The most potent compound 18e, substituted with benzamide at this position, displayed minimum inhibitory concentrations (MICs) of 0.27µg/mL against Mtb H37Ra and 1.36µg/mL against S. aureus. Furthermore, compound 18e had no obvious cytotoxicity to normal Vero cells (IC50=50.2µM). The results suggest that the novel scaffolds of aminothiazole conjugated nitrofuran would be a promising class of potent antitubercular and antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Nitrofuranos/farmacología , Staphylococcus aureus/efectos de los fármacos , Tiazoles/farmacología , Tuberculosis/tratamiento farmacológico , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nitrofuranos/química , Relación Estructura-Actividad , Tiazoles/química , Tuberculosis/microbiología , Células Vero
12.
Bioorg Med Chem Lett ; 25(7): 1373-6, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25754492

RESUMEN

Tuberculosis (TB) remains a major human health problem. New therapeutic antitubercular agents are urgent needed to control the global tuberculosis pandemic. We synthesized a new series of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives and evaluated their anti-mycobacterial activities against Mycobacterium tuberculosis H37Ra as well as their druggabilities. The results showed that most of these derivatives, especially the compounds with simple alkyl side chains, exhibited good antitubercular activities and favorable aqueous solubilities with no obvious cytotoxicity. It suggested that the 4-carbonyl piperazine substituents in benzothiazinone scaffold were well tolerated, in which the compound 8h, with an antitubercular activity of MIC 0.008 µM, exhibited an excellent aqueous solubility of 104 µg/mL, which was 100-fold better than the potent DprE1 inhibitor Comp.1 (BTZ038), also more soluble than PBTZ169.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Piperazinas/farmacología , Tiazinas/farmacología , Tuberculosis/tratamiento farmacológico , Animales , Antituberculosos/síntesis química , Antituberculosos/química , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piperazina , Piperazinas/síntesis química , Piperazinas/química , Relación Estructura-Actividad , Tiazinas/síntesis química , Tiazinas/química , Células Vero
13.
Bioorg Med Chem ; 23(15): 4333-4343, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26142317

RESUMEN

FLT3 inhibitors have been explored as a viable therapy for acute myeloid leukemia (AML). However, the clinical outcomes of these FLT3 inhibitors were underwhelming except AC220. Therefore, the development of novel FLT3 inhibitors with high potency against both FLT3-WT and FLT3-ITD mutants are strongly demanded at the present time. In this study, we designed and synthesized a series of novel N-(5-(tert-butyl)isoxazol-3-yl)-N'-phenylurea derivatives as FLT3 inhibitors. SAR studies focused on the fused rings led to the discovery of a series of compounds with high potency against FLT3-ITD-bearing MV4-11 cells and significantly inhibitory activity toward FLT3. Among these compounds, N-(5-(tert-butyl)isoxazol-3-yl)-N'-(4-(7-methoxyimidazo[1,2-a]pyridin-2-yl)phenyl)urea (16i), displayed acceptable aqueous solubility, desirable pharmacokinetic profile and high cytotoxicity selectivity against MV4-11 cells. This compound can inhibit phosphorylation of FLT3 and induce apoptosis in a concentration-dependent manner. Further in vivo antitumor studies showed that 16i led to complete tumor regression in the MV4-11 xenograft model at a dose of 60 mg/kg/d while without observable body weight loss. This study had provided us a new chemotype of FLT3 inhibitors as novel therapic candidates for AML.


Asunto(s)
Compuestos de Fenilurea/química , Inhibidores de Proteínas Quinasas/química , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Semivida , Humanos , Inmunohistoquímica , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Compuestos de Fenilurea/uso terapéutico , Compuestos de Fenilurea/toxicidad , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Trasplante Heterólogo , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa 3 Similar a fms/metabolismo
14.
Bioorg Med Chem Lett ; 24(6): 1581-8, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24529869

RESUMEN

Current treatment for hepatitis C is barely satisfactory, there is an urgent need to develop novel agents for combating hepatitis C virus infection. This study discovered a new class of thieno[2,3-b]pyridine derivatives as HCV inhibitors. First, a hit compound characterized by a thienopyridine core was identified in a cell-based screening of our privileged small molecule library. And then, structure activity relationship study of the hit compound led to the discovery of several potent compounds without obvious cytotoxicity in vitro (12c, EC50=3.3µM, SI >30.3, 12b, EC50=3.5µM, SI >28.6, 10l, EC50=3.9µM, SI >25.6, 12o, EC50=4.5µM, SI >22.2, respectively). Although the mechanism of them had not been clearly elucidated, our preliminary optimization of this class of compounds had provided us a start point to develop new anti-HCV agents.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Piridinas/química , Antivirales/síntesis química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Piridinas/síntesis química , Piridinas/farmacología , Piridinas/toxicidad , Relación Estructura-Actividad , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
15.
Gland Surg ; 13(8): 1448-1458, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39282042

RESUMEN

Background: Single-incision plus one-port laparoscopic duodenum-preserving pancreatic head resection (SILDPPHR+1) is yet to be reported, and therefore, its safety and efficacy have yet to be established. This study aimed to assess the short-term efficacy of SILDPPHR+1 in comparison to conventional laparoscopic duodenum-preserving pancreatic head resection (cLDPPHR). Methods: Consecutive patients who underwent SILDPPHR+1 and cLDPPHR procedures were screened. An analysis of the intraoperative and postoperative data of all patients was carried out. Results: Nineteen patients who underwent SILDPPHR+1 and 24 patients who underwent cLDPPHR at Sichuan Provincial People's Hospital from October 15, 2021, to October 30, 2023, were enrolled in this study. All baseline parameters of both groups were comparable. There was a statistically significant difference in the cosmetic score between the groups (P<0.001). No statistically significant differences were observed between the two groups regarding postoperative recovery, postoperative pancreatic fistula (POPF), bile leakage rate, delayed gastric emptying (DGE) rate, postpancreatectomy hemorrhage (PPH) rate, abdominal infection rate, or textbook outcomes. Conclusions: SILDPPHR+1 appears to be a reliable and safe procedure for certain patients, with no increase in the operating time or complications, similar to the results of cLDPPHR. Moreover, SILDPPHR+1 offers the added advantage of superior cosmetic results.

16.
Int J Biol Macromol ; 255: 128274, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37989432

RESUMEN

Heavy metal ions (HMIs) have been widely applied in various industries because of their excellent physicochemical properties. However, their discharging without appropriate treatment brought about serious pollution problems. So it is desirable but challenging to rapidly and completely clean up these toxic pollutants from water, especially utilizing environmentally friendly and naturally rich biomass materials. In this work, we prepared nanocellulose/carbon dots/magnesium hydroxide (CCMg) ternary composite using cotton via a simple hydrothermal method. The removal mechanism towards Cd2+ and Cu2+ was investigated using a combination of experimental techniques and density functional theory calculations. CCMg shows a good ability to remove HMIs. It is realized that the interaction between each component of CCMg and cadmium nitrate is mainly of hydrogen/dative bonds. Cadmium nitrate is preferentially enriched by the Mg(OH)2 moiety, proved by calculated thermodynamics, interfacial interactions and charges. After transformation, the cadmium carbonate precipitate is fixed on the surface by nanocellulose (NC) via chemical coupling; and of interest is that copper ion precipitates in the form of basic sulfate. Due to its high adsorption effect and simple recovery operation, CCMg is having a wide range of application prospects as a water treatment agent.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Aguas Residuales , Carbono , Metales Pesados/química , Cadmio/química , Nitratos , Adsorción , Iones , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno
17.
ACS Nano ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39448556

RESUMEN

The global demand for dialysis among patients with end-stage kidney disease has surpassed the capacity of public healthcare, a trend that has intensified. While wearable artificial kidney (WAK) technology is seen as a crucial solution to address this demand, there is an urgent need for both efficient and renewable toxin-adsorbent materials to overcome the long-standing technological challenges in terms of cost, device size, and sustainability. In this study, we employed screening experiments for adsorbent materials, multimodal characterization, and Monte Carlo adsorption simulations to identify a synthetic self-assembly silicalite-1 zeolite that exhibits highly ordered crystal arrays along the [010] face (b-axis) direction, demonstrating exceptional adsorption capabilities for small molecular toxins such as creatinine and urea associated with uremia. Moreover, this metal-free, cost-effective, easily synthesized, and highly efficient toxin adsorbent could be regenerated through calcination without compromising the performance. The simulated toxin adsorption experiments and comprehensive biocompatibility verification position it as an auxiliary adsorbent to reduce dialysate dosages in WAK devices as well as a potential adsorbent for small-molecule toxins in dialysis. This work is poised to propel the development of next-generation WAK devices by providing siliceous adsorbent solutions for small-molecule toxins.

18.
Int Immunopharmacol ; 137: 112492, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906005

RESUMEN

BACKGROUND: Local treatment may function synergistically with immunotherapy and targeted agents. This study aimed to assess the effectiveness and safety of transcatheter arterial chemoembolization (TACE) and hepatic artery infusion chemotherapy (HAIC) combined with tyrosine kinase inhibitors (TKIs) and programmed death-1 (PD-1) inhibitors in patients with initially unresectable hepatocellular carcinoma (uHCC). METHODS: A retrospective study was conducted on patients diagnosed with initially uHCC who received combined treatment of TACE-HAIC combined with TKIs and PD-1 inhibitors from July 2020 to February 2023. The primary endpoints were overall survival (OS) and progression free survival (PFS) and adverse events (AEs). Objective response rate (ORR), disease control rate (DCR) and conversion surgery rate (CSR), whereas the secondary endpoints. RESULTS: After screening, a total of 62 patients were selected for this study. The overall median OS was 18.2 (95% CI 16.24-20.16) months and median PFS was 9.2 (95% CI 7.24-11.16) months. Based on the modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria and RECIST v1.1 criteria, ORR was 67.7% (42/62), and the DCR was 90.3% (56/62), the CSR was 27.4% (17/62). The most common treatment-emergent adverse events (TEAEs) were transaminitis (56.4%, 35/62), nausea and vomiting (43.5%, 27/62), thrombocytopenia (37.1%, 23/62), abdominal pain (33.9%, 21/62), and fever (33.9%, 21/62). CONCLUSIONS: TKIs combined with PD-1 inhibitors plus TACE-HAIC therapy represents an effective and tolerable treatment option in patients with uHCC. Patients undergoing surgery after combination therapy may have survival benefits.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Inhibidores de Puntos de Control Inmunológico , Neoplasias Hepáticas , Inhibidores de Proteínas Quinasas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Quimioembolización Terapéutica/métodos , Quimioembolización Terapéutica/efectos adversos , Estudios Retrospectivos , Anciano , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Adulto , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Resultado del Tratamiento , Terapia Combinada , Infusiones Intraarteriales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Arteria Hepática
19.
Food Res Int ; 191: 114648, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059902

RESUMEN

In the present study, different oligosaccharides (fructooligosaccharide (FOS), galactooligosaccharide (GOS), isomaltooligosaccharide (IMO), and xylooligosaccharide (XOS)) were modified on casein (CN) via Maillard reaction. The CN-oligosaccharide conjugates were evaluated for modifications to functional groups, fluorescence intensity, water- and oil-holding properties, emulsion foaming properties, as well as general emulsion properties and stability. The results demonstrated that the covalent combination of CN and oligosaccharides augmented the spatial repulsion and altered the hydrophobic milieu of proteins, which resulted in a diminution in water-holding capacity, an augmentation in oil-holding capacity, and an enhancement in the emulsification properties of proteins. Among them, CN-XOS exhibited the most pronounced changes, with the emulsification activity index and emulsion stability index increasing by approximately 72% and 84.3%, respectively. Furthermore, CN-XOS emulsions have smaller droplet sizes and higher absolute potential values than CN emulsions. Additionally, CN-XOS emulsions demonstrate remarkable stability when ion concentration and pH are varied. These findings indicate that oligosaccharides modified via Maillard reaction can be used as good natural emulsifiers. This provides a theoretical basis for using oligosaccharides to modify proteins and act as natural emulsifiers.


Asunto(s)
Caseínas , Emulsionantes , Emulsiones , Reacción de Maillard , Oligosacáridos , Oligosacáridos/química , Caseínas/química , Emulsionantes/química , Emulsiones/química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química
20.
Biomaterials ; 314: 122876, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39383776

RESUMEN

Tumor cells can survive when detached from the extracellular matrix or lose cell-to-cell connections, leading to a phenomenon known as anoikis resistance (AR). AR is closely associated with the metastasis and proliferation of tumor cells, enabling them to disseminate, migrate, and invade after detachment. Here, we have investigated a novel composite nanoenzyme comprising mesoporous silica/nano-cerium oxide (MSN-Ce@SP/PEG). This nanoenzyme exhibited satisfactory catalase (CAT) activity, efficiently converting high levels of H2O2 within tumor cells into O2, effectively alleviating tumor hypoxia. Furthermore, MSN-Ce@SP/PEG nanoenzyme demonstrated high peroxidase (POD) activity, elevating reactive oxygen species (ROS) levels and attenuating AR in hepatocellular carcinoma (HCC) cells. The MSN-Ce@SP/PEG nanoenzyme exhibited satisfactory dual bioactivity in CAT and POD and was significantly enhanced under favorable photothermal conditions. Through the synergistic effects of these capabilities, the nanoenzyme disrupted the epithelial-mesenchymal transition (EMT) process in detached HCC cells, ultimately inhibiting the recurrence and metastasis potential of anoikis-resistant HCC cells. This study represents the first report of a novel nanoenzyme based on mesoporous silica/nano-cerium oxide for treating AR in HCC cells, thereby suppressing HCC recurrence and metastasis. The findings of this work offer a pioneering perspective for the development of innovative strategies to prevent the recurrence and metastasis of HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA