RESUMEN
Sensory neurons perceive environmental cues and are important of organismal survival. Peripheral sensory neurons interact intimately with glial cells. While the function of axonal ensheathment by glia is well studied, less is known about the functional significance of glial interaction with the somatodendritic compartment of neurons. Herein, we show that three distinct glia cell types differentially wrap around the axonal and somatodendritic surface of the polymodal dendritic arborization (da) neuron of the Drosophila peripheral nervous system for detection of thermal, mechanical, and light stimuli. We find that glial cell-specific loss of the chromatin modifier gene dATRX in the subperineurial glial layer leads to selective elimination of somatodendritic glial ensheathment, thus allowing us to investigate the function of such ensheathment. We find that somatodendritic glial ensheathment regulates the morphology of the dendritic arbor, as well as the activity of the sensory neuron, in response to sensory stimuli. Additionally, glial ensheathment of the neuronal soma influences dendritic regeneration after injury.
Asunto(s)
Dendritas/metabolismo , Drosophila melanogaster/metabolismo , Neuroglía/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Animales , Axones/metabolismo , Axones/efectos de la radiación , Caspasas/metabolismo , ADN Helicasas/metabolismo , Dendritas/efectos de la radiación , Proteínas de Drosophila/metabolismo , Activación Enzimática/efectos de la radiación , Luz , Neuroglía/efectos de la radiación , Células Receptoras Sensoriales/efectos de la radiaciónRESUMEN
Membrane trafficking is essential for sculpting neuronal morphology. The GARP and EARP complexes are conserved tethers that regulate vesicle trafficking in the secretory and endolysosomal pathways, respectively. Both complexes contain the Vps51, Vps52, and Vps53 proteins, and a complex-specific protein: Vps54 in GARP and Vps50 in EARP. In Drosophila, we find that both complexes are required for dendrite morphogenesis during developmental remodeling of multidendritic class IV da (c4da) neurons. Having found that sterol accumulates at the trans-Golgi network (TGN) in Vps54KO/KO neurons, we investigated genes that regulate sterols and related lipids at the TGN. Overexpression of oxysterol binding protein (Osbp) or knockdown of the PI4K four wheel drive (fwd) exacerbates the Vps54KO/KO phenotype, whereas eliminating one allele of Osbp rescues it, suggesting that excess sterol accumulation at the TGN is, in part, responsible for inhibiting dendrite regrowth. These findings distinguish the GARP and EARP complexes in neurodevelopment and implicate vesicle trafficking and lipid transfer pathways in dendrite morphogenesis.
Asunto(s)
Dendritas , Complejos Multiproteicos , Proteínas de Transporte Vesicular , Red trans-Golgi , Animales , Proteínas Portadoras , Dendritas/metabolismo , Drosophila , Proteínas de Drosophila , Aparato de Golgi/metabolismo , Complejos Multiproteicos/metabolismo , Receptores de Esteroides , Esteroles/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismoRESUMEN
Precise patterning of dendritic arbors is critical for the wiring and function of neural circuits. Dendrite-extracellular matrix (ECM) adhesion ensures that the dendrites of Drosophila dendritic arborization (da) sensory neurons are properly restricted in a 2D space, and thereby facilitates contact-mediated dendritic self-avoidance and tiling. However, the mechanisms regulating dendrite-ECM adhesion in vivo are poorly understood. Here, we show that mutations in the semaphorin ligand sema-2b lead to a dramatic increase in self-crossing of dendrites due to defects in dendrite-ECM adhesion, resulting in a failure to confine dendrites to a 2D plane. Furthermore, we find that Sema-2b is secreted from the epidermis and signals through the Plexin B receptor in neighboring neurons. Importantly, we find that Sema-2b/PlexB genetically and physically interacts with TORC2 complex, Tricornered (Trc) kinase, and integrins. These results reveal a novel role for semaphorins in dendrite patterning and illustrate how epidermal-derived cues regulate neural circuit assembly.
Asunto(s)
Dendritas/fisiología , Proteínas de Drosophila/metabolismo , Epidermis/fisiología , Quinasa 1 de Adhesión Focal/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Semaforinas/metabolismo , Células Receptoras Sensoriales/citología , Animales , Animales Modificados Genéticamente , Comunicación Celular , Drosophila , Proteínas de Drosophila/genética , Quinasa 1 de Adhesión Focal/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Larva , Diana Mecanicista del Complejo 2 de la Rapamicina , Biología Molecular , Complejos Multiproteicos/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Semaforinas/genética , Serina-Treonina Quinasas TOR/metabolismo , TransfecciónRESUMEN
Axons and dendrites differ in both microtubule organization and in the organelles and proteins they contain. Here we show that the microtubule motor dynein has a crucial role in polarized transport and in controlling the orientation of axonal microtubules in Drosophila melanogaster dendritic arborization (da) neurons. Changes in organelle distribution within the dendritic arbors of dynein mutant neurons correlate with a proximal shift in dendritic branch position. Dynein is also necessary for the dendrite-specific localization of Golgi outposts and the ion channel Pickpocket. Axonal microtubules are normally oriented uniformly plus-end-distal; however, without dynein, axons contain both plus- and minus-end distal microtubules. These data suggest that dynein is required for the distinguishing properties of the axon and dendrites: without dynein, dendritic organelles and proteins enter the axon and the axonal microtubules are no longer uniform in polarity.
Asunto(s)
Axones/metabolismo , Polaridad Celular , Dendritas/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Animales , Transporte Biológico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Endosomas/metabolismo , Genes de Insecto , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Mutación/genética , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
Little is known about how the distinct architectures of dendrites and axons are established. From a genetic screen, we isolated dendritic arbor reduction (dar) mutants with reduced dendritic arbors but normal axons of Drosophila neurons. We identified dar2, dar3, and dar6 genes as the homologs of Sec23, Sar1, and Rab1 of the secretory pathway. In both Drosophila and rodent neurons, defects in Sar1 expression preferentially affected dendritic growth, revealing evolutionarily conserved difference between dendritic and axonal development in the sensitivity to limiting membrane supply from the secretory pathway. Whereas limiting ER-to-Golgi transport resulted in decreased membrane supply from soma to dendrites, membrane supply to axons remained sustained. We also show that dendritic growth is contributed by Golgi outposts, which are found predominantly in dendrites. The distinct dependence between dendritic and axonal growth on the secretory pathway helps to establish different morphology of dendrites and axons.