Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Phytoremediation ; 23(13): 1412-1422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33765404

RESUMEN

Soil reclamation through afforestation along with soil amendments is one of the most suitable practices to combat soil salinity while the use of biochar may have potential to ameliorate salt-affected soils. This study was designed to check effects of different biochars on the physico-chemical properties of soil and characteristics of three important agroforestry trees species: Eucalyptus camaldulensis, Vachellia nilotica and Dalbergia sissoo, in saline soils. Farmyard manure biochar (FYMB), sugarcane bagasse biochar (SCB), woodchips biochar (WCB) were applied (6% w/w) to check their effects on plants under saline conditions. Results revealed that FYMB was the best for promoting all growth and physiological parameters of three tree species while E. camaldulensis was the best suited species. Different types of biochars influenced the growth of agroforestry species differently as SCB showed better results for D. sissoo as compared to WCB but for V. nilotica and WCB was more effective than SCB. Trend of growth and other physiological attributes for E. camaldulensis and V. nilotica was FYMB > WCB > SCB > control whereas D. sissoo showed trend as FYMB > SCB > WCB > control. Biochar was helpful in improving physicochemical characteristics of saline soils by lowering values of soil EC and SAR but type of biochar has a differential effect on tree growth.Novelty statement: Biochar may be a potential source for the amelioration of salt affected soils while less is known about the effects of different types of biochars on the soil and eco-physiological response of important agroforestry trees species in saline soils. In this study, although all types of biochar ameliorated the soil conditions and enhanced the plant growth, but farmyard manure biochar was the most efficient treatment among three types of used biochars.


Asunto(s)
Contaminantes del Suelo , Árboles , Biodegradación Ambiental , Carbón Orgánico , Estrés Salino , Suelo , Contaminantes del Suelo/análisis
2.
Front Plant Sci ; 14: 1144145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255552

RESUMEN

Soil and air pollution caused by heavy metals and limestone dust are prevalent in urban environments and they are an alarming threat to the environment and humans. This study was designed to investigate the changes in morphological and physiological traits of three urban tree species seedlings (Bombax ceiba, Conocarpus lancifolius, and Eucalyptus camaldulensis) under the individual as well as synergetic effects of heavy metal lead (Pb) and limestone dust toxicities. The tree species were grown under controlled environmental conditions with nine treatments consisting of three levels of dust (0, 10, and 20 g) and three levels of Pb contaminated water irrigation (0, 5, and 10 mg L-1). The results depicted that the growth was maximum in T1 and minimum in T9 for all selected tree species. B. ceiba performed better under the same levels of Pb and limestone dust pollution as compared with the other two tree species. The B. ceiba tree species proved to be the most tolerant to Pb and limestone pollution by efficiently demolishing oxidative bursts by triggering SOD, POD, CAT, and proline contents under different levels of lead and dust pollution. The photosynthetic rate, stomatal conductance, evapotranspiration rate, and transpiration rate were negatively influenced in all three tree species in response to different levels of lead and dust applications. The photosynthetic rate was 1.7%, 3.1%, 7.0%, 11.03%, 16.2%, 23.8%, 24.8%, and 30.7%, and the stomatal conductance was 5%, 10.5%, 23.5%, 40%, 50.01%, 61.5%, 75%, and 90.9%, greater in T2, T3, T4, T5, T6, T7, T8, and T9 plants of B. ceiba, respectively, as compared to T1. Based on the findings, among these three tree species, B. ceiba is strongly recommended for planting in heavy metal and limestone dust-polluted areas followed by E. camaldulensis and C. lancifolius due to their better performance and efficient dust and heavy metal-scavenging capability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA