Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Cell Physiol ; 238(8): 1823-1835, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37334837

RESUMEN

This study was designed to determine whether the use of acetylcholinesterase inhibitors (AChEIs), a group of drugs that stimulate acetylcholine receptors and are used to treat Alzheimer's disease (AD), is associated with osteoporosis protection and inhibition of osteoclast differentiation and function. Firstly, we examined the effects of AChEIs on RANKL-induced osteoclast differentiation and function with osteoclastogenesis and bone resorption assays. Next, we investigated the impacts of AChEIs on RANKL-induced nuclear factor κB and NFATc1 activation and expression of osteoclast marker proteins CA-2, CTSK and NFATc1, and dissected the MAPK signaling in osteoclasts in vitro by using luciferase assay and Western blot. Finally, we assessed the in vivo efficacy of AChEIs using an ovariectomy-induced osteoporosis mouse model, which was analyzed using microcomputed tomography, in vivo osteoclast and osteoblast parameters were assessed using histomorphometry. We found that Donepezil and Rivastigmine inhibited RANKL-induced osteoclastogenesis and impaired osteoclastic bone resorption. Moreover, AChEIs reduced the RANKL-induced transcription of Nfatc1, and expression of osteoclast marker genes to varying degrees (mainly Donepezil and Rivastigmine but not Galantamine). Furthermore, AChEIs variably inhibited RANKL-induced MAPK signaling accompanied by downregulation of AChE transcription. Finally, AChEIs protected against OVX-induced bone loss mainly by inhibiting osteoclast activity. Taken together, AChEIs (mainly Donepezil and Rivastigmine) exerted a positive effect on bone protection by inhibiting osteoclast function through MAPK and NFATc1 signaling pathways through downregulating AChE. Our findings have important clinical implications that elderly patients with dementia who are at risk of developing osteoporosis may potentially benefit from therapy with the AChEI drugs. Our study may influence drug choice in those patients with both AD and osteoporosis.


Asunto(s)
Resorción Ósea , Osteoporosis , Ratones , Animales , Femenino , Humanos , Osteogénesis , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Acetilcolinesterasa , Rivastigmina/farmacología , Rivastigmina/uso terapéutico , Donepezilo/farmacología , Donepezilo/uso terapéutico , Microtomografía por Rayos X , Resorción Ósea/genética , Osteoclastos/metabolismo , Factores de Transcripción , FN-kappa B/metabolismo , Osteoporosis/etiología , Ligando RANK/metabolismo , Factores de Transcripción NFATC/metabolismo , Diferenciación Celular , Ovariectomía/efectos adversos
2.
J Physiol ; 600(6): 1439-1453, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34731494

RESUMEN

Atmospheric carbon dioxide (CO2 ) levels are currently at 418 parts per million (ppm), and by 2100 may exceed 900 ppm. The biological effects of lifetime exposure to CO2 at these levels is unknown. Previously we have shown that mouse lung function is altered by long-term exposure to 890 ppm CO2 . Here, we assess the broader systemic physiological responses to this exposure. Mice were exposed to either 460 or 890 ppm from preconception to 3 months of age, and assessed for effects on developmental, renal and osteological parameters. Locomotor, memory, learning and anxiety-like behaviours of the mice were also assessed. Exposure to 890 ppm CO2 increased birthweight, decreased female body weight after weaning, and, as young adults, resulted in reduced engagement in memory/learning tasks, and hyperactivity in both sexes in comparison to controls. There were no clear anxiety, learning or memory changes. Renal and osteological parameters were minimally affected. Overall, this study shows that exposure of mice to 890 ppm CO2 from preconception to young adulthood alters growth and some behaviours, with limited evidence of compensatory changes in acid-base balance. These findings highlight the potential for a direct effect of increased atmospheric CO2 on mammalian health outcomes. KEY POINTS: Long-term exposure to elevated levels of atmospheric CO2 is an uncontrolled experiment already underway. This is the first known study to assess non-respiratory physiological impacts of long-term (conception to young adulthood) exposure of mice to CO2 at levels that may arise in the atmosphere due to global emissions. Exposure to elevated CO2 , in comparison to control mice, altered growth patterns in early life and resulted in hyperactive behaviours in young adulthood. Renal and bone parameters, which are important to balance acid-base levels to compensate for increased CO2 exposure, remained relatively unaffected. This work adds to the body of evidence regarding the effects of carbon emissions on mammalian health and highlights a potential future burden of disease.


Asunto(s)
Dióxido de Carbono , Fenómenos Fisiológicos Respiratorios , Animales , Femenino , Masculino , Mamíferos , Ratones
3.
J Cell Physiol ; 237(3): 1711-1719, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34893976

RESUMEN

Siglec-15, a Siglec family member and type-1 transmembrane protein, is expressed mainly in human macrophages and dendritic cells. It is comprised of a lysine-containing transmembrane domain, two extracellular immunoglobulin (Ig)-like domains and a short cytoplasmic domain. Siglec-15 is highly conserved in vertebrates and acts as an immunoreceptor. It exerts diverse functions on osteoclast physiology as well as the tumor microenvironment. Siglec-15 interacts with adapter protein DAP12 - Syk signaling pathway to regulate the RANKL/RANK-mediated PI3K, AKT, and ERK signaling pathways during osteoclast formation in vitro. Consistently, the lack of the Siglec-15 gene in mice leads to impaired osteoclast activity and osteopetrosis in vivo. In addition, Siglec-15 is expressed by tumor-associated macrophages (TAMs) and regulates the tumor microenvironment by activating the SYK/MAPK signaling pathway. Interestingly, Siglec-15 shares sequence homology to programmed death-ligand 1 (PD-L1) and has a potential immune-regulatory role in cancer immunology. Thus, Siglec-15 might also represent an alternative target for the treatment of cancers that do not respond to anti-PD-L1/PD-1 immunotherapy. Understanding the role of Siglec-15 in osteoclastogenesis and the tumor microenvironment will help us to develop new treatments for bone disorders and cancer.


Asunto(s)
Inmunoglobulinas , Neoplasias , Animales , Biología , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Estructura Molecular , Neoplasias/metabolismo , Osteoclastos/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Microambiente Tumoral/genética
4.
J Cell Physiol ; 237(3): 1790-1803, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34796915

RESUMEN

Excessive activity of osteoclasts contributes to skeletal diseases such as osteoporosis and osteolysis. However, current drugs targeting osteoclast have various deficiencies, placing natural compounds as substitutions of great potential. Roburic acid (RA) is a triterpenoid exacted from Radix Gentianae Macrophyllae, which exhibits inhibitory effects on inflammation and oxidation. By employing an in vitro osteoclastogenesis model, this study investigates the effects and mechanisms of RA on intracellular signaling induced by receptor activator of nuclear factor-κB ligand (RANKL). As expected, RA at a concentration scope from 1 to 10 µM dampened the osteoclast differentiation of bone marrow macrophages (BMMs) but without cell toxicity. Interestingly, RA showed no effect on osteoblastogenesis in vitro. Furthermore, RA mitigated F-actin ring formation, hydroxyapatite resorption, and gene expression in osteoclasts. Mechanistically, RA suppressed TNF receptor-associated factor 6 (TRAF6), the crucial adaptor protein following RANKL-RANK binding. On the one hand, RA downregulated the nuclear factor-κB (NF-κB) activity, extracellular regulated protein kinases (ERK) phosphorylation, and calcium oscillations. On the other hand, RA upregulated the antioxidative response element (ARE) response and the protein expression of heme oxygenase (HO)-1. These upstream alterations eventually led to the suppression of the nuclear factor of activated T cells 1 (NFATc1) activity and the expression of proteins involved in osteoclastogenesis and bone resorption. Furthermore, by using an ovariectomized (OVX) mice model, RA was found to have therapeutic effects against bone loss. On account of these findings, RA could be used to restrain osteoclasts for treating osteoporosis and other osteolytic diseases.


Asunto(s)
Resorción Ósea , Osteoporosis , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Señalización del Calcio , Diferenciación Celular , Femenino , Humanos , Ratones , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Ovariectomía , Ligando RANK/metabolismo , Ligando RANK/farmacología
5.
J Cell Physiol ; 236(3): 1950-1966, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32722851

RESUMEN

Osteolysis is a common medical condition characterized by excessive activity of osteoclasts and bone resorption, leading to severe poor quality of life. It is essential to identify the medications that can effectively suppress the excessive differentiation and function of osteoclasts to prevent and reduce the osteolytic conditions. It has been reported that Carnosol (Car), isolated from rosemary and salvia, has anti-inflammatory, antioxidative, and anticancer effects, but its activity on osteolysis has not been determined. In this study, we found that Car has a strong inhibitory effect on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation dose-dependently without any observable cytotoxicity. Moreover, Car can inhibit the RANKL-induced osteoclastogenesis and resorptive function via suppressing NFATc1, which is a result of affecting MAPK, NF-κB and Ca2+ signaling pathways. Moreover, the particle-induced osteolysis mouse model confirmed that Car could be effective for the treatment of bone loss in vivo. Taken together, by suppressing the formation and function of RANKL-induced osteoclast, Car, may be a therapeutic supplementary in the prevention or the treatment of osteolysis.


Asunto(s)
Abietanos/uso terapéutico , Osteogénesis , Osteólisis/inducido químicamente , Osteólisis/tratamiento farmacológico , Ligando RANK/farmacología , Titanio/efectos adversos , Abietanos/farmacología , Animales , Resorción Ósea/complicaciones , Resorción Ósea/genética , Resorción Ósea/patología , Señalización del Calcio/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/patología , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteólisis/genética , Osteólisis/patología , Proteolisis/efectos de los fármacos , Cráneo/efectos de los fármacos , Cráneo/patología
6.
Opt Express ; 28(8): 11852-11860, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403687

RESUMEN

We present a simple, compact, and efficient scheme for integrated multiple wavelength stabilization and continuous operation of a transportable 40Ca+ optical clock using a multi-channel cavity. The fractional frequency instability of 729 nm clock laser is ∼ 1.5 ×10-15 at 10 s with an approximate linewidth of 1 Hz. Meanwhile, frequency fluctuations of all the other lasers are less than ± 330 kHz/day. The one-day stability of this clock is measured as ∼ 5 ×10-17 through 72 h continuous operation. This scheme is potentially useful for the realization of next-generation transportable optical clocks and other metrological systems.

7.
FASEB J ; 33(6): 6726-6735, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30807230

RESUMEN

Being the principal cells responsible for bone resorption and pathologic bone loss, osteoclasts have become the main target for antiresorptive treatment. Cumambrin A is a natural compound isolated from Chrysanthemum indicum L. and belongs to a member of the sesquiterpene lactone family. To date, the therapeutic effect of cumambrin A on osteoporosis and its mechanisms of action are not known. In this study, we found that cumambrin A can significantly inhibit osteoclast formation and bone resorption through the suppression of receptor activator of NF-κB ligand (RANKL)-induced NF-κB and nuclear factor of activated T-cell activity and ERK phosphorylation. Furthermore, cumambrin A inhibits the expression of osteoclast marker genes including cathepsin K, calcitonin receptor, and V-ATPase d2. Using an in vivo ovariectomized mouse model, we showed that cumambrin A protects against estrogen withdrawal-induced bone loss. Collectively, our results reveal that cumambrin A can suppress osteoclast formation, bone resorption, and RANKL-induced signaling pathways, suggesting that cumambrin A is a potential therapeutic agent for the treatment of osteoporosis.-Zhou, L., Liu, Q., Hong, G., Song, F., Zhao, J., Yuan, J., Xu, J., Tan, R. X., Tickner, J., Gu, Q., Xu, J. Cumambrin A prevents OVX-induced osteoporosis via the inhibition of osteoclastogenesis, bone resorption, and RANKL signaling pathways.


Asunto(s)
Resorción Ósea/tratamiento farmacológico , Osteoclastos/citología , Osteogénesis/efectos de los fármacos , Osteoporosis/prevención & control , Ovariectomía/efectos adversos , Ligando RANK/metabolismo , Sesquiterpenos/farmacología , Animales , Diferenciación Celular , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , Osteoclastos/efectos de los fármacos , Osteoporosis/etiología , Osteoporosis/metabolismo , Osteoporosis/patología , Ligando RANK/genética , Células RAW 264.7 , Transducción de Señal
8.
Pharmacol Res ; 159: 104944, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32454224

RESUMEN

Osteoporosis, characterized by disrupted bone resorption and formation, is viewed as a global health challenge. Arctiin (ARC) is a main component of Arctium lappa L, which exerts chemopreventive effects against various tumor cells. However, the role of ARC in bone remodeling is still unclear. Here, we first demonstrated that ARC inhibits osteoclast formation and bone resorption function induced by the receptor activator of nuclear factor-κB ligand (RANKL) in a dose- and time-dependent manner without exerting cytotoxic effects. Mechanistic analysis revealed that ARC not only suppresses RANKL-induced mitogen-activated protein kinase (MAPK) and calcium signaling pathways, but also enhances the expression of cytoprotective enzymes that are involved in scavenging reactive oxygen species (ROS). Further, ARC inhibits the activation of the major transcription factor nuclear factor of activated T cells 1 (NFATc1) during RANKL-induced osteoclast formation. Preclinical studies showed that ARC protects bone loss in an ovariectomy (OVX) mouse model. Conclusively, our data confirmed that ARC could potentially inhibit osteoclastogenesis by abrogating RANKL-induced MAPK, calcium, and NFATc1 signaling pathway, as well as by promoting the expression of ROS scavenging enzymes in Nrf2/Keap1/ARE signaling pathway, thereby2 preventing OVX-induced bone loss. Thus, ARC may serve as a novel therapeutic agent for the treatment of osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Resorción Ósea/prevención & control , Furanos/farmacología , Glucósidos/farmacología , Factores de Transcripción NFATC/metabolismo , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis/prevención & control , Ligando RANK/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Elementos de Respuesta Antioxidante , Resorción Ósea/metabolismo , Resorción Ósea/patología , Señalización del Calcio , Modelos Animales de Enfermedad , Femenino , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factores de Transcripción NFATC/genética , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoporosis/metabolismo , Osteoporosis/patología , Ovariectomía , Células RAW 264.7
9.
J Cell Physiol ; 233(8): 6291-6303, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29521424

RESUMEN

The discovery of new therapeutic drugs with the ability of preventing inflammation and joint destruction with less adverse effects is urgently needed for rheumatoid arthritis (RA). Carnosic acid (CA), a major phenolic compound isolated from the leaves of Rosemary (Rosmarinus officinalis L.), has been reported to have antioxidative and antimicrobial properties. However, its effects on RA have not been elucidated. Here, we investigated the effects of CA on osteoclasts and fibroblast-like synoviocytes in vitro and on collagen-induced arthritis (CIA) in Wistar rats in vivo. Our in vitro and in vivo studies showed that CA suppressed the expression of pro-inflammatory cytokines including TNFɑ, IL-1ß, IL-6, IL-8, IL-17 and MMP-3, and downregulated the production of RANKL. More importantly, we observed that CA inhibited osteoclastogenesis and bone resorption in vitro and exerted therapeutic protection against joint destruction in vivo. Further biochemical analysis demonstrated that CA suppressed RANKL-induced activations of NF-κB and MAPKs (JNK and p38) leading to the downregulation of NFATc1. Taken together, our findings provide the convincing evidence that rosemary derived CA is a promising natural compound for the treatment of RA.


Asunto(s)
Abietanos/farmacología , Artritis Experimental/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Articulaciones/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Sinoviocitos/efectos de los fármacos , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Línea Celular , Colágeno/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Articulaciones/metabolismo , Ratones , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Células RAW 264.7 , Ratas , Ratas Wistar , Rosmarinus/química , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Sinoviocitos/metabolismo
10.
J Orthop Translat ; 45: 178-187, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549807

RESUMEN

Background: Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common bone and joint disease. There is currently a lack of effective treatment for GIONFH, and the disease progression may lead to total hip arthroplasty (THA). The exact mechanism of GIONFH pathogenesis remains unsettled, and emerging evidence indicates that the overactivation of osteoclasts plays a pivotal role in the occurrence and progression of this condition. Our previous study has shown that cycloastragenol (CAG), a triterpenoid saponin with multiple bioactivities, is a natural osteoclast inhibitor and has a protective effect on bone loss. However, its effect on GIONFH remains unclear. Methods: In this study, methylprednisolone (MPS) (20 mg/kg) was administered via gluteal muscle injection to female Sprague-Dawley (SD) rats to induce GIONFH, and different doses of CAG (5 and 15 mg/kg) were dispensed intraperitoneally for intervention. Micro-CT screening and angiography were applied to determine the shaping of necrotic lesions, the loss of trabecular bone, and the change in the local blood supply. The molecular mechanism was established by Real-time qPCR and Western blotting. Hematoxylin and eosin (H&E) staining was performed to identify empty lacunae in the femoral head. Results: CAG treatment shanked the necrotic lesion area, inhibited the trabecular bone loss, and improved the local blood supply in the femoral head. In addition, CAG medication lowered the ratio of Tnfsf11 (encoding RANKL) to Tnfrsf11b (encoding OPG) and the expression of osteoclast-specific genes, including Acp5 and Ctsk. Consistently, CAG treatment exhibited a dose-dependent weakening effect on the expression of osteoclastogenesis and bone resorption-related proteins, including TRAP, CTSK, and MMP9. CAG addition also alleviated the occurrence of empty lacunae in the subchondral region. Conclusion: Our discoveries demonstrate that CAG is a potential option for hip preservation therapy in GIONFH patients. Translational potential of this article: The protective effect of CAG on rats with GIONFH can be translated into clinical use.

11.
Arthritis Res Ther ; 25(1): 232, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041181

RESUMEN

OBJECTIVES: Osteoarthritis (OA) is a joint disease with a heritable component. Genetic loci identified via genome-wide association studies (GWAS) account for an estimated 26.3% of the disease trait variance in humans. Currently, there is no method for predicting the onset or progression of OA. We describe the first use of the Collaborative Cross (CC), a powerful genetic resource, to investigate knee OA in mice, with follow-up targeted multi-omics analysis of homologous regions of the human genome. METHODS: We histologically screened 275 mice for knee OA and conducted quantitative trait locus (QTL) mapping in the complete cohort (> 8 months) and the younger onset sub-cohort (8-12 months). Multi-omic analysis of human genetic datasets was conducted to investigate significant loci. RESULTS: We observed a range of OA phenotypes. QTL mapping identified a genome-wide significant locus on mouse chromosome 19 containing Glis3, the human equivalent of which has been identified as associated with OA in recent GWAS. Mapping the younger onset sub-cohort identified a genome-wide significant locus on chromosome 17. Multi-omic analysis of the homologous region of the human genome (6p21.32) indicated the presence of pleiotropic effects on the expression of the HLA - DPB2 gene and knee OA development risk, potentially mediated through the effects on DNA methylation. CONCLUSIONS: The significant associations at the 6p21.32 locus in human datasets highlight the value of the CC model of spontaneous OA that we have developed and lend support for an immune role in the disease. Our results in mice also add to the accumulating evidence of a role for Glis3 in OA.


Asunto(s)
Estudio de Asociación del Genoma Completo , Osteoartritis de la Rodilla , Humanos , Ratones , Animales , Osteoartritis de la Rodilla/genética , Regulación de la Expresión Génica , Sitios Genéticos , Fenotipo , Predisposición Genética a la Enfermedad/genética
13.
Nat Commun ; 14(1): 906, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810735

RESUMEN

Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast's 'resorptive apparatus'. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast's unique secretory organelle and a potential therapeutic target for metabolic bone diseases.


Asunto(s)
Resorción Ósea , Osteoclastos , Ratones , Animales , Osteoclastos/metabolismo , Transporte Biológico , Lisosomas/metabolismo , Huesos/metabolismo , Membrana Celular/metabolismo , Resorción Ósea/metabolismo
14.
Rev Sci Instrum ; 93(11): 113201, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461443

RESUMEN

We demonstrate a method to efficiently load a pair of 40Ca+-27Al+ ion crystals with sympathetic cooling and pulsed laser ablation, serving as a starting step for the 27Al+ clock. We achieved a technique to rapidly detect the loading of hot ions by monitoring the 2S1/2 → 2D5/2 narrow transition of 40Ca+ that couples to the shared motional modes between the two ions. The sympathetic cooling time of the 40Ca+-27Al+ ion pair is measured. Two traps are employed to compare the loading time from two directions and it was found that the loading from the axial direction takes much shorter time than loading from the radial direction of the trap. With the help of adaptively controlled trap potential, our method reduced the average loading time of a 40Ca+-27Al+ pair from 26 to 1 min. This research is an important step for increasing the uptime ratio of the 27Al+ optical clock and is useful for other mixed-species ion crystals based on sympathetic cooling.

15.
Biomed Pharmacother ; 154: 113622, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36081291

RESUMEN

Osteoclasts play an important role in maintaining the relative stability of bone mass. Abnormal number and function of osteoclasts are closely related to osteoporosis and osteolytic diseases. Thiaplakortone B (TPB), a natural compound derived from the Great Barrier Reef sponge Plakortis lita, has been reported to inhibit the growth of the malaria parasite, Plasmodium falciparum, but its effect on osteoclastogenesis has not been previously investigated. In our study, we found that TPB suppresses the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation and resorption activity by tartrate-resistant acid phosphatase (TRAcP) staining, immunofluorescence staining of F-actin belts and hydroxyapatite resorption assay. Furthermore, using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis, we discovered that TPB inhibits osteoclast-specific genes and proteins expression. Mechanistically, TPB blocks multiple upstream pathways including calcium oscillation, NF-κB, mitogen-activated protein kinase (MAPK) and nuclear factor of activated T cells 1(NFATc1) signaling pathways. In vivo, TPB could dampen bone loss in an ovariectomy (OVX) mouse model by micro-CT assessment and histological staining. Therefore, TPB may serve as a potential therapeutic candidate for the treatment of osteoporosis and osteolysis.


Asunto(s)
FN-kappa B , Osteoporosis , Animales , Señalización del Calcio , Diferenciación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos , Osteogénesis , Osteoporosis/patología , Ovariectomía , Ligando RANK/metabolismo
16.
Emerg Microbes Infect ; 11(1): 1550-1553, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35604772

RESUMEN

In order to overcome the pandemic of COVID-19, messenger RNA (mRNA)-based vaccine has been extensively researched as a rapid and versatile strategy. Herein, we described the immunogenicity of mRNA-based vaccines for Beta and the most recent Omicron variants. The homologous mRNA-Beta and mRNA-Omicron and heterologous Ad5-nCoV plus mRNA vaccine exhibited high-level cross-reactive neutralization for Beta, original, Delta, and Omicron variants. It indicated that the COVID-19 mRNA vaccines have great potential in the clinical use against different SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Humanos , ARN Mensajero/genética , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNm
17.
Front Pharmacol ; 12: 664836, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149419

RESUMEN

Integrity of the skeleton is sustained through the balanced activities of osteoblasts and osteoclasts in bone remodeling unit. The balance can be disrupted by excessive osteoclasts activation commonly seen in osteoporosis. Notopterol (NOT) is a main component of Notopterygium incisum which exerts a wide spectrum effect on biomedical pharmacology. In our study, we found NOT serves as an inhibitor in regulating RANKL-activated osteoclasts formation and bone resorption function by calculating tartrate resistant acid phosphatase (TRAcP) staining and hydroxyapatite resorption assays. Furthermore, RANKL-mediated signaling pathways including MAPK, NF-κB and calcium ossification were hampered, whereas ROS scavenging enzymes in Nrf2/Keap1/ARE signaling pathways were promoted by NOT. In addition, the activation of the essential transcription factor NFATc1 in RANKL-mediated osteoclastogenesis was almost totally suppressed by NOT. What is more, NOT diminished the loss of bone mass in preclinical model of OVX mice by blocking osteoclastogenesis determined by bone histomorphometry, TRAcP staining and H&E staining. Conclusively, our findings demonstrated that NOT could arrest osteoclastogenesis and bone resorptive activity by attenuating RANKL-mediated MAPK, NF-κB, calcium and NFATc1 signaling transduction pathways and enhancing ROS scavenging enzymes in Nrf2/Keap1/ARE pathways in vitro, and prohibit bone loss induced by OVX in vivo. Taken together, NOT may be identified to be a natural and novel treatment for osteolytic diseases.

18.
Front Pharmacol ; 12: 645140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630071

RESUMEN

The extravagant osteoclast formation and resorption is the main cause of osteoporosis. Inhibiting the hyperactive osteoclastic resorption is considered as an efficient treatment for osteoporosis. Rhaponticin (RH) is a small molecule that has been reported to possess anti-inflammatory, anti-allergic, anti-fibrotic, and anti-diabetic activities. However, the influence of RH on osteoclasts differentiation and function is still unclear. To this end, an array of assays including receptor activator of nuclear factor kappa-Β (NF-κB) ligand (RANKL) induced osteoclastogenesis, tartrate-resistant acidic phosphatase (TRAcP) staining, immunofluorescence, and hydroxyapatite resorption were performed in this study. It was found that RH had significant anti-catabolic effects by inhibiting osteoclastogenesis and bone resorption without cytotoxicity. Mechanistically, the expression of NADPH oxidase 1 (Nox1) was found to be suppressed and antioxidant enzymes including catalase, superoxide dismutase 2 (SOD-2), and heme oxygenase-1(HO-1) were enhanced following RH treatment, suggesting RH exhibited antioxidant activity by reducing the generation of reactive oxygen species (ROS) as well as enhancing the depletion of ROS. In addition, MAPKs, NF-κB, and intracellular Ca2+ oscillation pathways were significantly inhibited by RH. These changes led to the deactivation of osteoclast master transcriptional factor-nuclear factor of activated T cells 1 (NFATc1), as examined by qPCR and Western blot assay, which led to the decreased expression of downstream integrin ß3, c-Fos, cathepsin K, and Atp6v0d2. These results suggested that RH could effectively suppress RANKL-regulated osteoclast formation and bone resorption. Therefore, we propose that RH can represent a novel natural small molecule for the treatment of osteoporosis by inhibiting excessive osteoclast activity.

19.
Front Pharmacol ; 12: 810322, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126144

RESUMEN

Osteoporosis, which typically affects postmenopausal women, is an osteolytic disease due to over-activation of osteoclasts. However, current drugs targeting osteoclast inhibition face various side effects, making natural compounds with great interest as alternative treatment options. Cycloastragenol (CAG) is a triterpenoid with multiple biological activities. Previously, CAG's activity against aging-related osteoporosis was reported, but the mechanisms of actions for the activities were not understood. This study demonstrated that CAG dose-dependently inhibited osteoclast formation in receptor activator of nuclear factor-κB ligand (RANKL)-stimulated bone marrow macrophage (BMMs). Mechanism studies showed that CAG inhibited NF-κB, calcium, and nuclear factor of activated T cells 1 (NFATc1) pathways. Additionally, CAG also promoted the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/anti-oxidative response element (ARE) pathway that scavenges reactive oxygen species (ROS). Furthermore, CAG was also found to prevent bone loss of postmenopausal osteoporosis (PMO) in a preclinical model of ovariectomized (OVX) mice. Collectively, our research confirms that CAG inhibits the formation and function of osteoclasts by regulating RANKL-induced intracellular signaling pathways, which may represent a promising alternative for the therapy of osteoclast-related disease.

20.
Cell Prolif ; 53(2): e12746, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31867863

RESUMEN

Human high-temperature requirement protein 1 (HTRA1) is a member of serine proteases and consists of four well-defined domains-an IGFBP domain, a Kazal domain, a protease domain and a PDZ domain. HTRA1 is a secretory protein and also present intracellularly and associated with microtubules. HTRA1 regulates a broad range of physiological processes via its proteolytic activity. This review examines the role of HTRA1 in bone biology, osteoarthritis, intervertebral disc (IVD) degeneration and tumorigenesis. HTRA1 mediates diverse pathological processes via a variety of signalling pathways, such as TGF-ß and NF-κB. The expression of HTRA1 is increased in arthritis and IVD degeneration, suggesting that HTRA1 protein is attributed to cartilage degeneration and disease progression. Emerging evidence also suggests that HTRA1 has a role in tumorigenesis. Further understanding the mechanisms by which HTRA1 displays as an extrinsic and intrinsic regulator in a cell type-specific manner will be important for the development of HTRA1 as a therapeutic target.


Asunto(s)
Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Neoplasias/metabolismo , Neoplasias/patología , Secuencia de Aminoácidos , Animales , Humanos , Disco Intervertebral/metabolismo , Alineación de Secuencia , Transducción de Señal/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA