Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 49(3): 654-657, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300082

RESUMEN

A Reuleaux triangle core fiber (RTF) with triple rotational symmetry is proposed and fabricated. Then the RTF is twisted to form the chiral fiber grating, which converts the core mode into a vortex mode containing 3rd-order orbital angular momentum (OAM). Based on the Fourier expansion of the core boundary, the straight-sided and arc-sided triangular core profiles were analyzed, revealing the mechanism of high-efficiency OAM3 generation. The experimental results show a 3rd-order vortex mode with a high conversion efficiency and purity, and the polarization-independent characteristics endowed by the core shape are also confirmed. The proposed RTF provides a new, to the best of our knowledge, way for higher-order vortex beam generation, which can be used in optical fiber communication systems with OAM multiplexing.

2.
Opt Lett ; 49(4): 985-988, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359242

RESUMEN

We investigate a unidirectional coupled chiral fiber grating (UCFG) with both helical refractive index (RI) and loss modulation. The two modulations form a π/2 phase difference in the fiber cross-sectional azimuth angle, which "breaks" the mode coupled reciprocity of the forward and backward propagation. The forward propagation fundamental mode coupling is forbidden, while the backward propagation fundamental mode is coupled to the vortex mode. A simulation model based on the beam propagation method (BPM) is utilized to confirm the unidirectional coupling. Using the coupled mode analysis, we find that the key to the coupling difference lies in the non-Hermitian coupling matrix. In addition, the UCFG design involving mixed modulation is also discussed. The UCFG demonstrates its potential as a passive vortex beam generator, filter, and detector, with a transmittance difference of up to 30 dB between the coupled and uncoupled vortex modes.

3.
Langmuir ; 40(16): 8568-8579, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38591865

RESUMEN

Based on the typical similar repeat units (abcdefg)n of α-helical structure, the peptide H was designed to self-assemble into an organohydrogel in response to pH. Depending on the different pH, the proportions of secondary structure, microstructure, and mechanical properties of the gel were investigated. Circular dichroism (CD) and Fourier transform infrared (FT-IR) showed that the proportion of α-helical structure gradually increased to become dominant with the increase of pH. Combining transmission electron microscopy (TEM) and atomic force microscopy (AFM), it was found that the increase of the ordered α-helix structure promoted fiber formation. The further increase in pH changed the intermolecular forces, resulting in an increase in the α-helix content and the enhancement of helix-helix interaction, causing the gel fibers to converge into thicker and more dense ones. The temperature test showed the stable rheological properties of the organohydrogel between 20-60 °C. Drug release and cytotoxicity showed that the DOX-loaded organohydrogel could have a better release in an acidic environment, indicating its potential application as a drug local delivery carrier.

4.
Appl Opt ; 63(5): 1385-1393, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38437319

RESUMEN

In this work, in pursuit of a multifunctional device with a simple structure, high absorption rate, and excellent bandwidth, a tunable broadband terahertz (THz) absorber based on vanadium dioxide (V O 2) and graphene is proposed. Due to the phase transition of V O 2 and the electrically tunable properties of graphene, the structure realizes single broadband and dual-band absorption characteristics. When graphene is in the insulating state (E f=0e V) and V O 2 is in the metallic state, the developed system has more than 90% absorption and a wide absorption band from 1.36 to 5.48 THz. By adjusting the V O 2 conductivity, the bandwidth absorption can be dynamically varied from 23% to more than 90%, which makes it a perfect broadband absorber. When graphene is in the metallic state (E f=1e V), V O 2 is in the insulating state, and the designed device behaves as a tunable and perfect dual-band absorber, where the absorptivity of the dual-band spectrum can be continuously adjusted by varying the Fermi energy level of graphene. In addition, both the broad absorption spectrum and the dual-band absorption spectrum maintain strong polarization-independent properties and operate well over a wide incidence angle, and the designed system may provide new avenues for the development of terahertz and other frequency-domain tunable devices.

5.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38544029

RESUMEN

In this article, we propose and demonstrate a probe-type multi-core fiber (MCF) sensor for the multi-parameter measurement of seawater. The sensor comprises an MCF and two capillary optical fibers (COFs) with distinct inner diameters, in which a 45° symmetric core reflection (SCR) structure and a step-like inner diameter capillary (SIDC) structure filled with polydimethylsiloxane (PDMS) are fabricated at the fiber end. The sensor is equipped with three channels for different measurements. The surface plasmon resonance (SPR) channel (CHSPR) based on the side-polished MCF is utilized for salinity measurement. The fiber end air cavity, forming the Fabry-Pérot interference (FPI) channel (CHFPI), is utilized for pressure and temperature measurement. Additionally, the fiber Bragg grating (FBG) channel (CHFBG), which is inscribed in the central core, serves as temperature compensation for the measurement results. By combining three sensing principles with space division multiplexing (SDM) technology, the sensor overcomes the common challenges faced by multi-parameter sensors, such as channel crosstalk and signal demodulation difficulties. The experimental results indicate that the sensor has sensitivities of 0.36 nm/‱, -10.62 nm/MPa, and -0.19 nm/°C for salinity, pressure, and temperature, respectively. As a highly integrated and easily demodulated probe-type optical fiber sensor, it can serve as a valuable reference for the development of multi-parameter fiber optic sensors.

6.
Opt Express ; 31(14): 22507-22518, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475360

RESUMEN

Since Ciattoni A. et al. found that a particular circularly polarized beam propagating along the optical axis in a uniaxial crystal can generate a vortex with a reversed circular polarization, numerous studies of spin-orbit coupling in this polarization conversion process have been carried out. In this paper, from another perspective rather than the circular polarization conversion, for the first time we find that radial- and azimuthal-polarization components will be separated and finally focus on two separated focus points when circular Airy vortex beams propagate in a uniaxial crystal. Both the separation of the radial- and azimuthal-polarization components in positive and negative uniaxial crystals are investigated, and the physical mechanism of this phenomenon is explained in details. Moreover, the influences of the crystal length and birefringence on the separation of the radial- and azimuthal-polarization components are also discussed. Our results could offer deeper understanding of the propagation of light beam in uniaxial crystal and facilitate the flexible applications of circular Airy vortex beams.

7.
Opt Express ; 31(6): 10434-10448, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157590

RESUMEN

Though numerous studies of spin-orbit interaction (SOI) of light beams propagating along the optic axis of uniaxial crystals have been carried out, in previous studies, the initial input beams have cylindrical symmetry. In this case, the total system preserves cylindrical symmetry so that the output light after passing through the uniaxial crystal doesn't exhibit spin dependent symmetry breaking. Therefore, no spin Hall effect (SHE) occurs. In this paper, we investigate the SOI of a kind of novel structured light beam, grafted vortex beam (GVB) in uniaxial crystal. The cylindrical symmetry of the system is broken by the spatial phase structure of the GVB. As a result, a SHE determined by the spatial phase structure emerges. It is found that the SHE and evolution of the local angular momentum are controllable both by changing the grafted topological charge of the GVB and by employing linear electro-optic effect of the uniaxial crystal. This can open a new perspective to investigate the SHE of light beams in uniaxial crystals via constructing and manipulating the spatial structure of the input beams artificially, hence offers novel regulation capabilities of spin photon.

8.
Opt Express ; 31(1): 21-30, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36606946

RESUMEN

In this study, a curvature fiber sensor based on an enhanced core diameter mismatch is experimentally proposed and theoretically investigated. The structure is fabricated by splicing two types of step multimode and coreless fibers to excite the high-order cladding modes to improve the curvature sensitivity. Experimental results show that the highest curvature sensitivities of the structure reach -114.74 nm/m-1 in the Dip 1272 nm, -91.08 nm/m-1 in Dip 1408 nm, and -61.10 nm/m-1 in Dip 1644 nm in the measuring range of 0-0.49778 m-1. Meanwhile, the sensor's temperature and strain responses were also tested, which shows little influence on the curvature measurement. Additionally, the proposed fiber sensor exhibits features of easy fabrication, simple structure, and high mechanical strength. This study proposes a device for curvature measurement with potential use in material mechanics and optical fiber sensor design.

9.
Opt Express ; 31(25): 42218-42229, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087600

RESUMEN

A mixed multi-order vortex beam generator, based on a Reuleaux triangle core fiber chiral grating (RCFG), is proposed. The triangular perturbation and off-axis effects induced by core shape, result in the simultaneous coupling of the core mode with the 1st- and 3rd-order vortex modes. To the best of our knowledge, this is the first time that a mixed vortex beam was generated in a single chiral fiber. The phase matching conditions required for the co-coupling of multi-order vortex beams are analyzed based on the coupled mode theory. Additionally, a cladding shrinkage method is proposed to flexibly adjust the co-coupling wavelength. We found that the key to co-coupling lies in balancing the different order perturbations of the Reuleaux triangle core fiber (RTF). The proposed method offers a new approach for the design of mixed multi-order vortex beam generators, with potential applications in fields such as fiber OAM communications, optical tweezers, and super-resolution imaging.

10.
Opt Express ; 31(1): 381-395, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36606974

RESUMEN

Aiming at the problems of low efficiency, single function and complex structure of the existing dichroic metamirrors, the actively tunable linear and circular dichroic metamirrors based on single-layer graphene are proposed in this study. The designed metamirrors are mainly composed of the ion-gel, patterned graphene, polyimide, polysilicon and gold substrates. The anisotropy of the achiral structures can be used to realize circular dichroism (0.8) and linear dichroism (0.9) in two directions at the same time without functional switching. Additionally, the incidence angle of electromagnetic waves, rather than the structural chirality, is used to create the exceptionally strong dichroism. The proposed metamirrors not only increase the integration, but also reduce the angular dispersion and complexity of the structure. What's more, by changing the Fermi level of graphene, the CD function of the metamirrors can be tuned in the range of 0 - 0.8, and the LD function can be tuned in the range of 0.22 - 0.9. The designed metamirrors can achieve dual functions under a wide range of incident angles, and can be widely used in various fields such as terahertz imaging, biological detection, optical sensing, and spectrometry.

11.
Opt Express ; 31(25): 42637-42650, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087633

RESUMEN

In the context of optical fiber humidity sensing, the long-term stability of sensors in high humidity and dew environments such as bathrooms or marine climates remains a challenge, especially since many humidity sensitive materials are water soluble. In this study, we use methyldiethanolamine, pentaerythritol triacrylate and Eosin Y to form a liquid-solid structure humidity sensitive component, the outermost layer is coated with PDMS passivating layer to ensure the stability and durability of the humidity sensor under the conditions of dew and high humidity. The liquid microcavity of the sensor consists of methyldiethanolamine-pentaerythritol triacrylate composite solution, and the sensitivity is several times higher than that of the liquid-free cavity sensor. The sensitivity of the sensor to temperature is verified (0.43 nm/°C and 0.30 nm/°C, respectively) and temperature crosstalk is compensated using a matrix. The compact structure allows for ultra-fast response (602 ms) and recovery time (349 ms). Our work provides a promising platform for efficient and practical humidity and other gas monitoring systems.

12.
Opt Express ; 31(20): 31768-31779, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37858994

RESUMEN

This paper introduces a surface plasmon resonance (SPR) sensor using tapered silica fiber and photopolymer coating for enhanced refractive index (RI) detection. Tapering the silica fiber to a diameter of 10 µm ensures the evanescent wave leaks into a 1.8-µm thick photopolymer film, which increases the average waveguide RI and broadens the RI detection range accordingly. A 50-nm thick single-side gold film is coated on the photopolymer film, exciting SPR and causing less light transmission loss than a double-side gold film. The method avoids the complex microfabrication processes of conventional polymer optical fiber SPR sensors, while the waveguide RI can be controlled by altering the curing time of the photopolymer during fabrication. The sensor has an overall sensitivity of 3686.25 nm/RIU, enabling RI detection of 1.333 - 1.493. Moreover, the sensor has an ultrahigh sensitivity of 6422.9 nm/RIU in the RI range of 1.423 - 1.493. The temperature response is about 1.43 nm/°C at 20 - 50 °C, which has little impact on RI detection. Finally, we demonstrate that the sensor can grade the severity of hepatic steatosis by measuring the RIs of cytoplasm/triglyceride emulsions with superior sensing performance.

13.
Opt Express ; 31(13): 22144-22156, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381295

RESUMEN

Aiming at the problems of narrow working bandwidth, low efficiency, and complex structure of existing terahertz chiral absorption, we propose a chiral metamirror composed of C-shaped metal split ring and L-shaped vanadium dioxide (VO2). This chiral metamirror is composed of three layers of structure, a gold substrate at the bottom, the first polyethylene cyclic olefin copolymer (Topas) dielectric layer and VO2-metal hybrid structure as the top. Our theoretical results led us to show that this chiral metamirror has a circular dichroism (CD) value greater than 0.9 at 5.70 to 8.55 THz and has a maximum value of 0.942 at f = 7.18 THz. In addition, by adjusting the conductivity of VO2, the CD value can be continuously adjustable from 0 to 0.942, which means that the proposed chiral metamirror supports the free switching of the CD response between the on and off states, and the CD modulation depth exceeds 0.99 in the range of 3 to 10 THz. Moreover, we discuss the influence of structural parameters and the change of incident angle on the performance of the metamirror. Finally, we believe that the proposed chiral metamirror has important reference value in the terahertz range for constructing chiral light detectors, CD metamirrors, switchable chiral absorbers and spin-related systems. This work will provide a new idea for improving the terahertz chiral metamirror operating bandwidth and promote the development of terahertz broadband tunable chiral optical devices.

14.
Opt Express ; 31(23): 37564-37573, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017883

RESUMEN

A hole-assisted three-core fiber (HATCF) has been proposed as a sensor for simultaneous measurement of refractive index (RI) and temperature. An 8 mm long HATCF is fused between two single mode fibers (SMFs). One air hole of the HATCF is opened by femtosecond laser ablation technique to expose a suspended core to the external environment. Due to the same diameters of the two suspended cores, the resonance couplings between the center core and the two suspended cores occur at the same wavelength, which leads to a strong resonance dip. When the solution is filled into the open air hole, the resonance dip is split in two dips because the phase matching wavelength between center core and the suspended core in the open air hole is changed. Simultaneous measurement of RI and temperature can be achieved by monitoring the wavelengths of the two dips. The measured RI and temperature sensitivities are 1369 nm/RIU in the range of 1.333-1.388 and 83.48 pm/°C in the range of 25-70 °C. The proposed sensor has outstanding advantages such as simple structure, high integration and dual parameter measurement, making it a potential application in the field of biological detection.

15.
Opt Express ; 31(20): 32543-32553, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859055

RESUMEN

An optical fiber sensor based on a hole-assisted dual-core fiber (HADCF) has been proposed and experimentally demonstrated for dual-parameter measurements. The dual-mode interferometer created uses the LP01 mode and LP11 mode in the suspended core of a specialist optical fiber, combined with a directional coupler formed by using the suspended core and the center core in a 16 mm long HADCF. Using this, the simultaneous measurement of salinity (due to the presence of NaCl) and temperature has been achieved through monitoring the interference dip and resonance dip. The sensitivities of the measurement of salinity and temperature are 190.7 pm/‰ and -188.2 pm/°C, respectively. The sensor developed has the advantages of simplicity of fabrication, a high level of integration and the potential for measurement of dual parameters, supporting its potential applications in marine environment measurements.

16.
Opt Lett ; 48(11): 2785-2788, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262210

RESUMEN

In this paper, a temperature sensor based on a point-coated long-period fiber grating (PC-LPFG) is proposed and investigated. This structure is fabricated using a thermal filling method. The point-coating approach effectively increases the coupling efficiency between the sensing unit and the surrounding medium. The polymethyl methacrylate (PMMA), with high thermal optical coefficient (TOC) and thermal expansion coefficient (TEC), improves the temperature sensitivity of the PC-LPFG. Experimental results show that the temperature sensitivities of this sensor are 2.948 nm/°C and 6.717 nm/°C in the temperature ranges of 80.4-91°C and 91-97°C, respectively. The hot point-coating method of the PC-LPFG provides a new, to the best of our knowledge, approach to combining optic fiber sensors with high polymer materials.

17.
Opt Lett ; 48(14): 3641-3644, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37450714

RESUMEN

This paper presents a novel fiber liquid-pressure sensor that uses photopolymer glue to generate Fabry-Perot (F-P) interference, resulting in high sensitivity and a wide measurement range. The sensor comprises a single-mode fiber and photopolymer glue; the latter adheres to the fiber's end face and is decomposed by a 405-nm laser to create an air channel with a diameter of 5.9 µm and a length of 50 µm. When the air channel is placed underwater, a 17.5-µm air cavity forms between the fiber core and the air-liquid boundary due to the pressure balance, creating an F-P interferometer. Based on experimental results, the sensor has an average pressure sensitivity of 5.68 nm/kPa over 0.49-2.94 kPa. The sensitivity can be maintained at this level across different pressure measurement ranges (up to about 500 kPa) by using a 980-nm laser's radiation pressure to reset the air-liquid boundary. Besides its high sensitivity and wide measurement range, the sensor's straightforward structure, durability, affordability, compactness, and simple construction make it an appealing choice for liquid pressure measurement applications in various fields.

18.
Opt Lett ; 48(2): 235-238, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638426

RESUMEN

A simple plastic optical fiber (POF) based surface plasmon resonance (SPR) sensor is proposed and demonstrated for simultaneous measurement of refractive index (RI) and temperature. The sensor consists of a series of V-grooves along the POF and a side-polish structure at the other side of the fiber. The V-groove structure can alter the SPR excitation angle and act as a mode filter, effectively enhancing the SPR effect and narrowing the SPR wavelength width. After coating a layer of thermosensitive material-polydimethylsiloxane (PDMS) film on half part of the fiber probe, a dual-parameter sensor probe is obtained for RI and temperature measurement. Experimental results show the RI sensitivity of the prepared probe can reach 1546 nm/RIU in the RI range of 1.335-1.37 RIU and the temperature sensitivity is -0.83 nm/°C in the temperature range of 20-80°C. The sensor is simple in structure and low cost, and has potential applications in the biochemical sensing fields.


Asunto(s)
Fibras Ópticas , Resonancia por Plasmón de Superficie , Temperatura , Polonia , Refractometría , Plásticos
19.
Opt Lett ; 48(1): 25-28, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563359

RESUMEN

Catenary is referred to as "the real mathematical and mechanical form" in the architectural field. Because of the unique phase control characteristic of the catenary, it has excellent ability in optical manipulation. Here, we propose an optical waveform conversion device based on optical fiber-integrated catenary ring-array metasurfaces. The device consists of a cascade structure of a single-mode fiber (SMF) and a graded-index fiber (GIF). At the GIF end, two kinds of catenary ring-array metasurfaces are introduced to realize beam shaping from Gaussian beam (GB) to Bessel beam. The device can selectively generate a focused or non-diffracting Bessel beam by changing the circular polarization state of the incident light. It is worth noting that under some parameters of the device, the output Bessel beam can break through the diffraction limit, which has potential applications in the fields of optical imaging, optical communication, and optical trapping.

20.
Opt Lett ; 48(10): 2591-2594, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186716

RESUMEN

In this Letter, we show stable suspension and directional manipulation of microdroplets on a liquid surface employing simple-mode fiber with a Gaussian beam at 1480-nm wavelength using the photothermal effect. The intensity of the light field generated by the single-mode fiber is used to generate droplets of different numbers and sizes. In addition, the effect of the heat generated at different heights from the liquid surface is discussed through numerical simulation. In this work, the optical fiber is not only free to move at any angle, solving the difficulty that a certain working distance is needed to generate microdroplets on free space, it can also allow the continuous generation and directional manipulation of multiple microdroplets, which is of tremendous scientific relevance and application value in promoting the development and cross-fertilization of life sciences and other interdisciplinary fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA