Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 75: 128956, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36038117

RESUMEN

Glutamine-addicted cancer metabolism is recently recognized as novel cancer target especially for KRAS and KEAP1 co-occurring mutations. Selective glutaminase1 (GLS1) inhibition was reported using BPTES which has novel mode of allosteric inhibition. However, BPTES is a highly hydrophobic and symmetric molecule with very poor solubility which results in suboptimal pharmacokinetic parameters and hinders its further development. As an ongoing effort to identify more drug-like GLS1 inhibitors via systematic structure - activity relationship (SAR) analysis of BPTES analogs, we disclose our novel macrocycles for GLS1 inhibition with conclusive SAR analysis on the core, core linker, and wing linker, respectively. Selected molecules resulted in reduction in intracellular glutamate levels in LR (LDK378-resistant) cells which is consistent to cell viability result. Finally, compounds 13 selectively reduced the growth of A549 and H460 cells which have co-occurring mutations including KRAS and KEAP1.


Asunto(s)
Glutaminasa , Tiadiazoles , Animales , Glutamatos , Glutamina/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Relación Estructura-Actividad , Sulfuros/química , Tiadiazoles/química
2.
Br J Cancer ; 123(12): 1720-1729, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32963347

RESUMEN

BACKGROUND: Recurrent and/or metastatic squamous cell carcinoma of head and neck (R/M SCCHN) is a common cancer with high recurrence and mortality. Current treatments have low response rates (RRs). METHODS: Fifty-three patients with R/M SCCHN received continuous oral buparlisib. In parallel, patient-derived xenografts (PDXs) were established in mice to evaluate resistance mechanisms and efficacy of buparlisib/cetuximab combination. Baseline and on-treatment tumour genomes and transcriptomes were sequenced. Based on the integrated clinical and PDX data, 11 patients with progression under buparlisib monotherapy were treated with a combination of buparlisib and cetuximab. RESULTS: For buparlisib monotherapy, disease control rate (DCR) was 49%, RR was 3% and median progression-free survival (PFS) and overall survival (OS) were 63 and 143 days, respectively. For combination therapy, DCR was 91%, RR was 18% and median PFS and OS were 111 and 206 days, respectively. Four PDX models were originated from patients enrolled in the current clinical trial. While buparlisib alone did not inhibit tumour growth, combination therapy achieved tumour inhibition in three of seven PDXs. Genes associated with apoptosis and cell-cycle arrest were expressed at higher levels with combination treatment than with buparlisib or cetuximab alone. CONCLUSIONS: The buparlisib/cetuximab combination has significant promise as a treatment strategy for R/M SCCHN. CLINICAL TRIAL REGISTRATION: NCT01527877.


Asunto(s)
Aminopiridinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cetuximab/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Morfolinas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Aminopiridinas/efectos adversos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Supervivencia Celular/efectos de los fármacos , Cetuximab/efectos adversos , Variaciones en el Número de Copia de ADN , Resistencia a Antineoplásicos , Femenino , Perfilación de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/mortalidad , Humanos , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Persona de Mediana Edad , Morfolinas/efectos adversos , Mutación , Trasplante de Neoplasias , Supervivencia sin Progresión , Reproducibilidad de los Resultados , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Resultado del Tratamiento , Regulación hacia Arriba/genética , Secuenciación Completa del Genoma/métodos
3.
BMC Cancer ; 20(1): 316, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293356

RESUMEN

BACKGROUND: We investigated whether head and neck squamous cell carcinoma (HNSCC) patient-derived xenografts (PDXs) reaffirm patient responses to anti-cancer therapeutics. METHODS: Tumors from HNSCC patients were transplanted into immunodeficient mice and propagated via subsequent implantation. We evaluated established PDXs by histology, genomic profiling, and in vivo anti-cancer efficacy testing to confirm them as the authentic in vivo platform. RESULTS: From 62 HNSCCs, 15 (24%) PDXs were established. The primary cancer types were tongue (8), oropharynx (3), hypopharynx (1), ethmoid sinus cancer (1), supraglottic cancer (1), and parotid gland (1); six PDXs (40%) were established from biopsy specimens from advanced HNSCC. PDXs mostly retained donor characteristics and remained stable across passages. PIK3CA (H1047R), HRAS (G12D), and TP53 mutations (H193R, I195T, R248W, R273H, E298X) and EGFR, CCND1, MYC, and PIK3CA amplifications were identified. Using the acquisition method, biopsy showed a significantly higher engraftment rate when compared with that of surgical resection (100% [6/6] vs. 16.1% [9/56], P < 0.001). Specimens obtained from metastatic sites showed a significantly higher engraftment rate than did those from primary sites (100% [9/9] vs. 11.3% [6/53], P < 0.001). Three PDX models from HPV-positive tumors were established, as compared to 12 from HPV-negative (15.8% [3/19] and 27.9% [12/43] respectively, P = 0.311), suggesting that HPV positivity tends to show a low engraftment rate. Drug responses in PDX recapitulated the clinical responses of the matching patients with pan-HER inhibitors and pan-PI3K inhibitor. CONCLUSIONS: Genetically and clinically annotated HNSCC PDXs could be useful preclinical tools for evaluating biomarkers, therapeutic targets, and new drug discovery.


Asunto(s)
Afatinib/administración & dosificación , Aminopiridinas/administración & dosificación , Carcinoma de Células Escamosas/tratamiento farmacológico , Redes Reguladoras de Genes , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Metotrexato/administración & dosificación , Morfolinas/administración & dosificación , Afatinib/farmacología , Aminopiridinas/farmacología , Animales , Biopsia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , Amplificación de Genes , Variación Genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metotrexato/farmacología , Ratones , Morfolinas/farmacología , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Modelación Específica para el Paciente , Resultado del Tratamiento , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Arch Virol ; 165(11): 2599-2603, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32699980

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is caused by SFTS virus (SFTSV). Although SFTS originated in China, it is an emerging infectious disease with prevalence confirmed in Japan, Korea, and Vietnam. The full-length genomes of 51 Korean SFTSV isolates from 2013 to 2016 were sequenced, and the sequences were deposited into a public database (GenBank) and analyzed to elucidate the phylogeny and evolution of the virus. Although most of the Korean SFTSV isolates were closely related to previously reported Japanese isolates, some were closely related to previously reported Chinese isolates. We identified one Korean strain that appears to have resulted from multiple inter-lineage reassortments. Several nucleotide and amino acid variations specific to the Korean isolates were identified. Future studies should focus on how these variations affect virus pathogenicity and evolution.


Asunto(s)
Infecciones por Bunyaviridae/virología , Fiebre por Flebótomos/virología , Phlebovirus/genética , Secuencia de Bases , China , Evolución Molecular , Variación Genética , Genotipo , Humanos , Japón , Phlebovirus/clasificación , Phlebovirus/aislamiento & purificación , Filogenia , República de Corea , Análisis de Secuencia de ADN , Trombocitopenia/virología
5.
Arch Virol ; 165(12): 3085, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32915315

RESUMEN

Authors would like to correct the 4th author name from "Ju-Yeon Lee" to the correct version "Joo-Yeon Lee".

6.
BMC Infect Dis ; 17(1): 498, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28709419

RESUMEN

BACKGROUND: In 2015, the largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection outside the Middle East occurred in South Korea. We summarized the epidemiological, clinical, and laboratory findings of the first Korean case of MERS-CoV and analyzed whole-genome sequences of MERS-CoV derived from the patient. CASE PRESENTATION: A 68-year-old man developed fever and myalgia 7 days after returning to Korea, following a 10-day trip to the Middle East. Before diagnosis, he visited 4 hospitals, potentially resulting in secondary transmission to 28 patients. On admission to the National Medical Center (day 9, post-onset of clinical illness), he presented with drowsiness, hypoxia, and multiple patchy infiltrations on the chest radiograph. He was intubated (day 12) because of progressive acute respiratory distress syndrome (ARDS) and INF-α2a and ribavirin treatment was commenced. The treatment course was prolonged by superimposed ventilator associated pneumonia. MERS-CoV PCR results converted to negative from day 47 and the patient was discharged (day 137), following rehabilitation therapy. The complete genome sequence obtained from a sputum sample (taken on day 11) showed the highest sequence similarity (99.59%) with the virus from an outbreak in Riyadh, Saudi Arabia, in February 2015. CONCLUSIONS: The first case of MERS-CoV infection had high transmissibility and was associated with a severe clinical course. The patient made a successful recovery after early treatment with antiviral agents and adequate supportive care. This first case in South Korea became a super-spreader because of improper infection control measures, rather than variations of the virus.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/etiología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Anciano , Antivirales/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Brotes de Enfermedades , Humanos , Control de Infecciones/métodos , Masculino , Medio Oriente , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Filogenia , República de Corea/epidemiología , Ribavirina/uso terapéutico , Arabia Saudita/epidemiología
8.
Clin Cancer Res ; 30(8): 1582-1594, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330145

RESUMEN

PURPOSE: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) serve as the standard first-line therapy for EGFR-mutated non-small cell lung cancer (NSCLC). Despite the sustained clinical benefits achieved through optimal EGFR-TKI treatments, including the third-generation EGFR-TKI osimertinib, resistance inevitably develops. Currently, there are no targeted therapeutic options available postprogression on osimertinib. Here, we assessed the preclinical efficacy of BI-4732, a novel fourth-generation EGFR-TKI, using patient-derived preclinical models reflecting various clinical scenarios. EXPERIMENTAL DESIGN: The antitumor activity of BI-4732 was evaluated using Ba/F3 cells and patient-derived cell/organoid/xenograft models with diverse EGFR mutations. Intracranial antitumor activity of BI-4732 was evaluated in a brain-metastasis mouse model. RESULTS: We demonstrated the remarkable antitumor efficacy of BI-4732 as a single agent in various patient-derived models with EGFR_C797S-mediated osimertinib resistance. Moreover, BI-4732 exhibited activity comparable to osimertinib in inhibiting EGFR-activating (E19del and L858R) and T790M mutations. In a combination treatment strategy with osimertinib, BI-4732 exhibited a synergistic effect at significantly lower concentrations than those used in monotherapy. Importantly, BI-4732 displayed potent antitumor activity in an intracranial model, with low efflux at the blood-brain barrier. CONCLUSIONS: Our findings highlight the potential of BI-4732, a selective EGFR-TKI with high blood-brain barrier penetration, targeting a broad range of EGFR mutations, including C797S, warranting clinical development.


Asunto(s)
Acrilamidas , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Resistencia a Antineoplásicos/genética , Compuestos de Anilina
9.
Cancer Res Commun ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916448

RESUMEN

Immune checkpoint inhibitors are effective first-line therapy for solid cancers. However, low response rate and acquired resistance over time has led to the need for additional therapeutic options. Here, we evaluated synergistic anti-tumor efficacy of EGFR x MET targeting bispecific antibody, amivantamab with PD-L1 immunotherapy, pembrolizumab in head and neck squamous cell carcinoma (HNSCC) and lung squamous cell carcinoma (LUSC) tumor bearing humanized PDX models. We demonstrated that pembrolizumab or amivantamab alone was ineffective and that combination treatment induced a significant reduction of tumor growth in both models (p<0.0001 and p<0.01, respectively). It appeared that combination of amivantamab and pembrolizumab significantly enhanced infiltration of granzyme B-producing CD8 T cells was in the TME of HNSCC PDX (p<0.01), and enhanced neoantigen-associated central memory CD8 T cells in circulating immune cells. Analysis of single cell RNA transcriptomics suggested that the tumor cells dramatically upregulated EGFR and MET in response to PD-L1 immunotherapy, potentially creating a metabolic state fit for tumor persistence in the tumor microenvironment (TME) and rendered pembrolizumab ineffective. We demonstrated that EGFRHIGHMETHIGH subcluster displayed an increased expression of genes implicated in production of lactate (SLC16A3 and LDHA) compared to the EGFRLOWMETLOW cluster. Accumulation of lactate in the TME has been associated with immunosuppression by hindering the infiltration of tumor killing CD8 T and NK cells. This study proved that amivantamab reduced glycolytic markers in the EGFRHIGHMETHIGH subcluster including SLC16A3 and LDHA and highlighted remodeling of the TME by combination treatment, providing rationale for additional therapy of amivantamab with PD-1 immunotherapy.

10.
Clin Cancer Res ; 29(1): 221-232, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36269795

RESUMEN

PURPOSE: MET amplification is a frequent mechanism of resistance to EGFR tyrosine kinase inhibitors (TKI) in patients with EGFR-mutated non-small cell lung cancer (NSCLC), and combined treatment with EGFR TKIs and MET TKIs has been explored as a strategy to overcome resistance. However, durable response is invariably limited by the emergence of acquired resistance. Here, we investigated the preclinical activity of REGN5093-M114, a novel antibody-drug conjugate targeting MET in MET-driven patient-derived models. EXPERIMENTAL DESIGN: Patient-derived organoids, patient-derived cells, or ATCC cell lines were used to investigate the in vitro/in vivo activity of REGN5093-M114. RESULTS: REGN5093-M114 exhibited significant antitumor efficacy compared with MET TKI or unconjugated METxMET biparatopic antibody (REGN5093). Regardless of MET gene copy number, MET-overexpressed TKI-naïve EGFR-mutant NSCLC cells responded to REGN5093-M114 treatment. Cell surface MET expression had the most predictive power in determining the efficacy of REGN5093-M114. REGN5093-M114 potently reduced tumor growth of EGFR-mutant NSCLC with PTEN loss or MET Y1230C mutation after progression on prior osimertinib and savolitinib treatment. CONCLUSIONS: Altogether, REGN5093-M114 is a promising candidate to overcome the challenges facing functional MET pathway blockade.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoconjugados , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inmunoconjugados/uso terapéutico , Receptores ErbB , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas c-met , Mutación , Línea Celular Tumoral
11.
Biochim Biophys Acta ; 1813(5): 763-71, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21329734

RESUMEN

The biologically active factors known as adipocytokines are secreted primarily by adipose tissues and can act as modulators of angiogenesis. Visfatin, an adipocytokine that has recently been reported to have angiogenic properties, is upregulated in diabetes, cancer, and inflammatory diseases. Because maintenance of an angiogenic balance is critically important in the management of these diseases, understanding the molecular mechanism by which visfatin promotes angiogenesis is very important. In this report, we describe our findings demonstrating that visfatin stimulates the mammalian target of the rapamycin (mTOR) pathway, which plays important roles in angiogenesis. Visfatin induced the expression of hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor (VEGF) in human endothelial cells. Inhibition of the mTOR pathway by rapamycin eliminated the angiogenic and proliferative effects of visfatin. The visfatin-induced increase in VEGF expression was also eliminated by RNA interference-mediated knockdown of the 70-kDa ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR. Visfatin inactivated glycogen synthase kinase 3ß (GSK3ß) by phosphorylating it at Ser-9, leading to the nuclear translocation of ß-catenin. Both rapamycin co-treatment and p70S6K knockdown inhibited visfatin-induced GSK3ß phosphorylation at Ser-9 and nuclear translocation of ß-catenin. Taken together, these results indicate that mTOR signaling is involved in visfatin-induced angiogenesis, and that this signaling leads to visfatin-induced VEGF expression and nuclear translocation of ß-catenin. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Células Endoteliales/enzimología , Neovascularización Fisiológica/efectos de los fármacos , Nicotinamida Fosforribosiltransferasa/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Venas Umbilicales/citología , Animales , Western Blotting , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Endoteliales/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , Sirolimus/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , beta Catenina/metabolismo
12.
J Microbiol ; 60(2): 187-191, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34994956

RESUMEN

The National Culture Collection of Pathogens (NCCP) is a microbial resource bank in Korea that collects pathogen resources causing infectious disease in human and distributes them for research and education. The NCCP bank attempts to discover strains with various characteristics and specific purposes to provide diverse resources to researchers. Staphylococcus aureus American Type Culture Collection (ATCC) 6538P is used as a reference strain in the microbial assay for antibiotics in the Korean and in the United States Pharmacopoeias. We aimed to analyze domestically isolated microbial resources from the NCCP to replace the S. aureus reference strain. Staphylococcus aureus strains were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the VITEK-2 system and characterized by multilocus sequence typing, 16S rRNA sequencing, and antibiotic susceptibility testing. Several candidate strains had similar characteristics as the reference strain. Among them, the nucleotide sequence of the 16S rRNA region of NCCP 16830 was 100% identical to that of the reference strain; it was sensitive to six types of antibiotics and showed results most similar to the reference strain. A validity evaluation was conducted using the cylinder-plate method. NCCP 16830 presented valid results and had the same performance as ATCC 6538P; therefore, it was selected as an alternative candidate strain.


Asunto(s)
Staphylococcus aureus/clasificación , Staphylococcus aureus/genética , Antibacterianos/farmacología , Técnicas de Tipificación Bacteriana/métodos , Farmacorresistencia Bacteriana , Humanos , ARN Ribosómico 16S , Estándares de Referencia , República de Corea , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/citología , Staphylococcus aureus/efectos de los fármacos , Secuenciación Completa del Genoma
13.
Ther Adv Med Oncol ; 14: 17588359221079125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251316

RESUMEN

INTRODUCTION: Osimertinib is a third-generation EGFR tyrosine kinase inhibitor (TKI) that is approved for the use of EGFR-mutant non-small cell lung cancer (NSCLC) patients. In this study, we investigated the acquired resistance mechanisms in NSCLC patients and patient-derived preclinical models. METHODS: Formalin-fixed paraffin-embedded tumor samples and plasma samples from 55 NSCLC patients who were treated with osimertinib were collected at baseline and at progressive disease (PD). Next-generation sequencing was performed in tumor and plasma samples using a 600-gene hybrid capture panel designed by AstraZeneca. Osimertinib-resistant cell lines and patient-derived xenografts and cells were generated and whole exome sequencing and RNA sequencing were performed. In vitro experiments were performed to functionally study the acquired mutations identified. RESULTS: A total of 55 patients and a total of 149 samples (57 tumor samples and 92 plasma samples) were analyzed, and among them 36 patients had matched pre- and post-treatment samples. EGFR C797S (14%) mutation was the most frequent EGFR-dependent mechanism identified in all available progression samples, followed by EGFR G824D (6%), V726M (3%), and V843I (3%). Matched pre- and post-treatment sample analysis revealed in-depth acquired mechanisms of resistance. EGFR C797S was still most frequent (11%) among EGFR-dependent mechanism, while among EGFR-independent mechanisms, PIK3CA, ALK, BRAF, EP300, KRAS, and RAF1 mutations were detected. Among Osimertinib-resistant cell lines and patient-derived models, we noted acquired mutations which were potentially targetable such as NRAS p.Q61K, in which resistance could be overcome with combination of osimertinib and trametinib. A patient-derived xenograft established from osimertinib-resistant patient revealed KRAS p.G12D mutation which could be overcome with combination of osimertinib, trametinib, and buparlisib. CONCLUSION: In this study, we explored the genetic profiles of osimertinib-resistant NSCLC patient samples using targeted deep sequencing. In vitro and in vivo models harboring osimertinib resistance revealed potential novel treatment strategies after osimertinib failure.

14.
Exp Mol Med ; 54(8): 1236-1249, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35999456

RESUMEN

Acquired resistance to inhibitors of anaplastic lymphoma kinase (ALK) is a major clinical challenge for ALK fusion-positive non-small-cell lung cancer (NSCLC). In the absence of secondary ALK mutations, epigenetic reprogramming is one of the main mechanisms of drug resistance, as it leads to phenotype switching that occurs during the epithelial-to-mesenchymal transition (EMT). Although drug-induced epigenetic reprogramming is believed to alter the sensitivity of cancer cells to anticancer treatments, there is still much to learn about overcoming drug resistance. In this study, we used an in vitro model of ceritinib-resistant NSCLC and employed genome-wide DNA methylation analysis in combination with single-cell (sc) RNA-seq to identify cytidine deaminase (CDA), a pyrimidine salvage pathway enzyme, as a candidate drug target. CDA was hypomethylated and upregulated in ceritinib-resistant cells. CDA-overexpressing cells were rarely but definitively detected in the naïve cell population by scRNA-seq, and their abundance was increased in the acquired-resistance population. Knockdown of CDA had antiproliferative effects on resistant cells and reversed the EMT phenotype. Treatment with epigenome-related nucleosides such as 5-formyl-2'-deoxycytidine selectively ablated CDA-overexpressing resistant cells via accumulation of DNA damage. Collectively, our data suggest that targeting CDA metabolism using epigenome-related nucleosides represents a potential new therapeutic strategy for overcoming ALK inhibitor resistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Citidina Desaminasa/genética , Citidina Desaminasa/farmacología , Resistencia a Antineoplásicos/genética , Epigenoma , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Análisis de la Célula Individual
15.
Yonsei Med J ; 63(1): 42-55, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34913283

RESUMEN

PURPOSE: Agonists of the stimulator of interferon genes (STING) play a key role in activating the STING pathway by promoting the production of cytokines. In this study, we investigated the antitumor effects and activation of the systemic immune response of treatment with DMXAA (5,6-dimethylxanthenone-4-acetic acid), a STING agonist, in EML4-ALK lung cancer and CT26 colon cancer. MATERIALS AND METHODS: The abscopal effects of DMXAA in the treatment of metastatic skin nodules were assessed. EML4-ALK lung cancer and CT26 colon cancer models were used to evaluate these effects after DMXAA treatment. To evaluate the expression of macrophages and T cells, we sacrificed the tumor-bearing mice after DMXAA treatment and obtained the formalin-fixed paraffin-embedded (FFPE) tissue and tumor cells. Immunohistochemistry and flow cytometry were performed to analyze the expression of each FFPE and tumor cell. RESULTS: We observed that highly infiltrating immune cells downstream of the STING pathway had increased levels of chemokines after DMXAA treatment. In addition, the levels of CD80 and CD86 in antigen-presenting cells were significantly increased after STING activation. Furthermore, innate immune activation altered the systemic T cell-mediated immune responses, induced proliferation of macrophages, inhibited tumor growth, and increased numbers of cytotoxic memory T cells. Tumor-specific lymphocytes also increased in number after treatment with DMXAA. CONCLUSION: The abscopal effect of DMXAA treatment on the skin strongly reduced the spread of EML4-ALK lung cancer and CT26 colon cancer through the STING pathway and induced the presentation of antigens.


Asunto(s)
Células T de Memoria , Neoplasias Cutáneas , Animales , Inmunoterapia , Macrófagos , Proteínas de la Membrana/genética , Ratones
16.
Front Oncol ; 12: 821391, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356198

RESUMEN

A recently developed treatment strategy for lung cancer that combines immune checkpoint inhibitors with chemotherapy has been applied as a standard treatment for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), and it has improved the outcomes of chemotherapy. Maintenance treatment with anti-PD-1 antibody (aPD-1) enhances the effect of immunochemical combination therapy and improves therapeutic efficacy, which contributes toward a significant improvement in patient survival rates. The AXL receptor tyrosine kinase (AXL), which is expressed in tumor cells, plays an essential role in the resistance of cancers to chemotherapy and immunotherapy, and stimulates signaling associated with epithelial-mesenchymal transition (EMT) in metastatic cancer. AXL is thus an attractive target for controlling resistance to anti-tumor therapies. In this study, we examined the effect of AXL inhibitors on immune activation and tumor growth in TC1 and C3PQ mouse tumor models, in the context of clinical immunotherapy/chemotherapy and maintenance treatment, using an aPD-1 with/without pemetrexed. To determine the optimal timing for administration of SKI-G-801, an AXL inhibitor, we investigated its anti-tumor effects based on inclusion at the immunochemotherapy and maintenance therapy stages. We also performed flow cytometry-based immune profiling of myeloid cells and lymphoid cells at different points in the treatment schedule, to investigate the immune activation and anti-tumor effects of the AXL inhibitor. The addition of SKI-G-801 to the immune checkpoint inhibitor and chemotherapy stage, as well as the maintenance therapy stage, produced the best anti-tumor results, and significant tumor growth inhibition was observed in both the TC1 and C3PQ models. Both models also exhibited increased proportion of effector memory helper T cells and increased expression of CD86+ macrophages. Especially, regulatory T cells were significantly reduced in the TC1 tumor model and there was an increase in central memory cytotoxic T cell infiltration and an increased proportion of macrophages with high CD80 expression in the C3PQ tumor model. These results suggest increased infiltration of T cells, consistent with previous studies using AXL inhibitors. It is expected that the results from this study will serve as a stepping stone for clinical research to improve the existing standard of care.

17.
Clin Transl Immunology ; 11(1): e1364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35003748

RESUMEN

OBJECTIVES: AXL-mediated activation of aberrant tyrosine kinase drives various oncogenic processes and facilitates an immunosuppressive microenvironment. We evaluated the anti-tumor and anti-metastatic activities of SKI-G-801, a small-molecule inhibitor of AXL, alone and in combination with anti-PD-1 therapy. METHODS: In vitro pAXL inhibition by SKI-G-801 was performed in both human and mouse cancer cell lines. Immunocompetent mouse models of tumor were established to measure anti-metastatic potential of SKI-G-801. Furthermore, SKI-G-801, anti-PD-1 or their combination was administered as an adjuvant or neoadjuvant in the 4T1 tumor model to assess their potential for clinical application. RESULTS: SKI-G-801 robustly inhibited pAXL expression in various cell lines. SKI-G-801 alone or in combination with anti-PD-1 potently inhibited metastasis in B16F10 melanoma, CT26 colon and 4T1 breast models. SKI-G-801 inhibited the growth of B16F10 and 4T1 tumor-bearing mice but not immune-deficient mice. An antibody depletion assay revealed that CD8+ T cells significantly contributed to SKI-G-801-mediated survival. Anti-PD-1 and combination group were observed the increased CD8+Ki67+ and effector T cells and M1 macrophage and decreased M2 macrophage, and granulocytic myeloid-derived suppressor cell (G-MDSC) compared to the control group. The neoadjuvant combination of SKI-G-801 and anti-PD-1 therapy achieved superior survival benefits by inducing more profound T-cell responses in the 4T1 syngeneic mouse model. CONCLUSION: SKI-G-801 significantly suppressed tumor metastasis and growth by enhancing anti-tumor immune responses. Our results suggest that SKI-G-801 has the potential to overcome anti-PD-1 therapy resistance and allow more patients to benefit from anti-PD-1 therapy.

18.
Heliyon ; 7(10): e08170, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34660919

RESUMEN

To understand the origin of variants and their evolutionary history in the early stage of the COVID-19 pandemic, time-scaled phylogenetic and gene variation analyses were performed. The mutation patterns and evolution characteristics were examined using the Bayesian Evolutionary Analysis Sampling Trees (BEAST) with 349 whole-genome sequences available by March 2020. The results revealed five phylogenetic clusters (Groups A-E), with 408 nucleotide variants. The mutations including the deletion of three nucleotides underwent various and complicated changes in the whole genome over time, while some frequency or transient mutations were also observed. Phylogenetic analysis demonstrated that SARS-CoV-2 originated from China and was transmitted to other Asian countries, followed by North America and Europe. This study could help to comprehensively understand the evolutionary characteristics of SARS-CoV-2 with a special emphasis on its global variation patterns.

19.
Clin Cancer Res ; 27(15): 4397-4409, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34083237

RESUMEN

PURPOSE: Patient-derived organoids (PDO) of lung cancer has been recently introduced, reflecting the genomic landscape of lung cancer. However, clinical relevance of advanced lung adenocarcinoma organoids remains unknown. Here, we examined the ability of PDOs to predict clinical responses to targeted therapies in individual patients and to identify effective anticancer therapies for novel molecular targets. EXPERIMENTAL DESIGN: Eighty-four organoids were established from patients with advanced lung adenocarcinoma. Formalin-fixed, paraffin-embedded tumor specimens from corresponding patients were analyzed by whole-exome sequencing (n = 12). Organoids were analyzed by whole-exome sequencing (n = 61) and RNA sequencing (n = 55). Responses to mono or combination targeted therapies were examined in organoids and organoid-derived xenografts. RESULTS: PDOs largely retained somatic alterations including driver mutations of matching patient tumors. PDOs were able to recapitulate progression-free survival and objective responses of patients with non-small cell lung cancer receiving clinically approved tyrosine kinase inhibitors. PDOs recapitulated activity of therapeutic strategies under clinical investigation. YUO-071 harboring an EGFR exon 19 deletion and a BRAF G464A mutation and the matching patient responded to dabrafenib/trametinib combination therapy. YUO-004 and YUO-050 harboring an EGFR L747P mutation was sensitive to afatinib, consistent with the response in the matching patient of YUO-050. Furthermore, we utilized organoids to identify effective therapies for novel molecular targets by demonstrating the efficacy of poziotinib against ERBB2 exon 20 insertions and pralsetinib against RET fusions. CONCLUSIONS: We demonstrated translational relevance of PDOs in advanced lung adenocarcinoma. PDOs are an important diagnostic tool, which can assist clinical decision making and accelerate development of therapeutic strategies.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Organoides/efectos de los fármacos , Adenocarcinoma del Pulmón/patología , Humanos , Neoplasias Pulmonares/patología , Modelos Biológicos , Estadificación de Neoplasias
20.
Eur J Cancer ; 153: 179-189, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34182269

RESUMEN

OBJECTIVE: Anti-programmed death (PD)-1 therapy confers sustainable clinical benefits for patients with non-small-cell lung cancer (NSCLC), but only some patients respond to the treatment. Various clinical characteristics, including the PD-ligand 1 (PD-L1) level, are related to the anti-PD-1 response; however, none of these can independently serve as predictive biomarkers. Herein, we established a machine learning (ML)-based clinical decision support algorithm to predict the anti-PD-1 response by comprehensively combining the clinical information. MATERIALS AND METHODS: We collected clinical data, including patient characteristics, mutations and laboratory findings, from the electronic medical records of 142 patients with NSCLC treated with anti-PD-1 therapy; these were analysed for the clinical outcome as the discovery set. Nineteen clinically meaningful features were used in supervised ML algorithms, including LightGBM, XGBoost, multilayer neural network, ridge regression and linear discriminant analysis, to predict anti-PD-1 responses. Based on each ML algorithm's prediction performance, the optimal ML was selected and validated in an independent validation set of PD-1 inhibitor-treated patients. RESULTS: Several factors, including PD-L1 expression, tumour burden and neutrophil-to-lymphocyte ratio, could independently predict the anti-PD-1 response in the discovery set. ML platforms based on the LightGBM algorithm using 19 clinical features showed more significant prediction performance (area under the curve [AUC] 0.788) than on individual clinical features and traditional multivariate logistic regression (AUC 0.759). CONCLUSION: Collectively, our LightGBM algorithm offers a clinical decision support model to predict the anti-PD-1 response in patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Aprendizaje Automático/normas , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA