Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36985774

RESUMEN

Silver nanoparticles (Ag-NPs) are most effective against pathogens and have widely been studied as antibacterial agents in commodity clothing, medical textile, and other hygiene products. However, prolonged utilization of silver and rapid mutation in bacterium stains has made them resistant to conventional silver agents. On the other hand, strict compliance against excessive utilization of toxic reagents and the current sustainability drive is forcing material synthesis toward green routes with extended functionality. In this study, we proposed an unprecedented chemical-free green synthesis of bioactive Ag-NPs without the incorporation of any chemicals. Cinnamon essential oil (ECO) was used as a bio-reducing agent with and without the mediation of lime extract. A rapid reaction completion with better shape and size control was observed in the vicinity of lime extract when incorporated into the reaction medium. The interaction of natural metabolites and citrus compounds with nanoparticles was established using Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The application of as-prepared nanoparticles on textiles encompasses extended bioactivity to treated fabric with infused easy-care performance. To the best of our knowledge, this is the first reported instance of utilizing bioactive silver nanoparticles as a functional finish, both as an antimicrobial and as for easy care in the absolute absence of toxic chemicals. The easy-care performance of fabric treated with lime-mediated nanoparticles was found to be 141O, which is around 26% better than bare cotton without any significant loss in fabric strength. Furthermore, to enlighten the sustainability of the process, the development traits were mapped with the United Nations Sustainable Development Goals (SDGs), which show significant influence on SDGs 3, 8, 9, and 14. With the effective suspension of microorganisms, added functionality, and eco-mapping with SDGs with the chemical-free synthesis of nanoparticles, widespread utilization can be found in various healthcare and hygiene products along with the fulfillment of sustainability needs.


Asunto(s)
Nanopartículas del Metal , Nanosferas , Plata/farmacología , Plata/química , Desarrollo Sostenible , Nanopartículas del Metal/química , Antibacterianos/química , Vestuario , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
Epileptic Disord ; 25(6): 845-855, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37698298

RESUMEN

OBJECTIVE: To describe the process of three-dimensional printing in epilepsy surgery using three different methods: low-force stereolithography (SLA), filament deposition modeling (FDM), and Polyjet Stratasys, while comparing them in terms of printing efficiency, cost, and clinical utility. MRI and CT images of patient anatomy have been limited to review in the two-dimensional plane, which provides only partial representation of intricate intracranial structures. There has been growing interest in 3D printing of physical models of this complex anatomy to be used as an educational tool and for surgical visualization. One specific application is in epilepsy surgery where there are challenges in visualizing complex intracranial anatomy in relation to implanted surgical tools. METHODS: MRI and CT data from patients with refractory epilepsy from a single center that underwent surgery are converted into 3D volumes, or stereolithography files. These were then printed using three popular 3D printing methods: SLA, FDM, and Polyjet. Faculty were surveyed on the impact of 3D modeling on the surgical planning process. RESULTS: All three methods generated physical models with an increasing degree of resolution, transparency, and clinical utility directly related to cost of production and accurate representation of anatomy. Polyjet models were the most transparent and clearly represented intricate implanted electrodes but had the highest associated cost. FDM produced relatively inexpensive models that, however, were nearly completely opaque, limiting clinical utility. SLA produced economical and highly transparent models but was limited by single material capacity. SIGNIFICANCE: Three-dimensional printing of patient-specific anatomy is feasible with a variety of printing methods. The clinical utility of lower-cost methods is limited by model transparency and lack of multi-material overlay respectively. Polyjet successfully generated transparent models with high resolution of internal structures but is cost-prohibitive. Further research needs to be done to explore cost-saving methods of modeling.


Asunto(s)
Epilepsia , Impresión Tridimensional , Humanos , Estudios de Factibilidad , Estereolitografía , Epilepsia/cirugía
3.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458016

RESUMEN

Field-effect transistors (FET) composed of transition metal dichalcogenide (TMDC) materials have gained huge importance as biosensors due to their added advantage of high sensitivity and moderate bandgap. However, the true potential of these biosensors highly depends upon the quality of TMDC material, as well as the orientation of receptors on their surfaces. The uncontrolled orientation of receptors and screening issues due to crossing the Debye screening length while functionalizing TMDC materials is a big challenge in this field. To address these issues, we introduce a combination of high-quality monolayer WSe2 with our designed Pyrene-based receptor moiety for its ordered orientation onto the WSe2 FET biosensor. A monolayer WSe2 sheet is utilized to fabricate an ideal FET for biosensing applications, which is characterized via Raman spectroscopy, atomic force microscopy, and electrical prob station. Our construct can sensitively detect our target protein (streptavidin) with 1 pM limit of detection within a short span of 2 min, through a one-step functionalizing process. In addition to having this ultra-fast response and high sensitivity, our biosensor can be a reliable platform for point-of-care-based diagnosis.

4.
ACS Omega ; 7(48): 43492-43498, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36506148

RESUMEN

The adsorption of peptides and proteins on hydrophobic solid surfaces has received considerable research attention owing to their wide applications to biocompatible nanomaterials and nanodevices, such as biosensors and cell adhesion materials with reduced nanomaterial toxicity. However, fundamental understandings about physicochemical hydrophobic interactions between peptides and hydrophobic solid surfaces are still unknown. In this study, we investigate the effect of secondary structures on adsorption energies between peptides and hydrophobic solid surfaces via experimental and theoretical analyses using surface-assisted laser desorption/ionization-time-of-flight (SALDI-TOF) and molecular dynamics (MD) simulations. The hydrophobic interactions between peptides and hydrophobic solid surfaces measured via SALDI-TOF and MD simulations indicate that the hydrophobic interaction of peptides with random coil structures increased more than that of peptides with an α-helix structure when polar amino acids are replaced with hydrophobic amino acids. Additionally, our study sheds new light on the fundamental understanding of the hydrophobic interaction between hydrophobic solid surfaces and peptides that have diverse secondary structures.

5.
J Colloid Interface Sci ; 535: 353-362, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30316122

RESUMEN

ZnO as an electron transporting material (ETM) in perovskite solar cells has many benefits, including low temperature processability and high mobility. We explore here for the first time, hysteresis-less mesostructured perovskite solar cells with an incredible steady-state efficiency of 20.62% particularly enhancement of the device stability. We anticipated a device structure consisting of a novel fully-solution-processed and low-temperature barium hydroxide hybridized boron-doped ZnO (B:ZnO) bilayer film as electron transport material (ETM). We modify the design of ETMs with reduced trap states density is very crucial to obtain highly stabilized power conversion efficiency (PCE) and adjustable architectures in perovskite solar cells which should produce an impact on emerging highly efficient devices and their future commercialization.

6.
ACS Omega ; 3(8): 9648-9657, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459095

RESUMEN

Solid-state perovskite solar cells have been expeditiously developed since the past few years. However, there are a number of open questions and issues related to the perovskite devices, such as their long-term ambient stability and hysteresis in current density-voltage curves. We developed highly efficient and hysteresis-less perovskite devices by changing the frequently used TiO2 mesoscopic layer with polymer-hybridized multidoped ZnO nanocrystals in a common n-i-p structure for the first time. The gradual adjustment of ZnO conduction band position using single- and multidopant atoms will likely enhance the power conversion efficiency (PCE) from 8.26 to 13.54%, with PCEmax = 15.09%. The highest PCEavg of 13.54% was demonstrated by 2 atom % boron and 6 atom % fluorine co-doped (B, F:ZnO) nanolayers (using optimized film thickness of 160 nm) owing to their highest conductivity, carrier concentration, optical transmittance, and band-gap energy compared to other doped films. We also successfully apply a fine polyethylenimine thin layer on the doped ZnO nanolayers, causing the reduction in work function and overall demonstrating the enhancement in PCE from ∼10.86% up to 16.20%. A polymer-mixed electron-transporting layer demonstrates the remarkable PCEmax of 20.74% by decreasing the trap sites in the oxide layer that probably reduces the chances of carrier interfacial recombination originated from traps and thus improves the device performance. Particularly, we produce these electron-rich multidoped ZnO nanolayers via electrospray technique, which is highly suitable for the future development of perovskite solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA