Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Plant ; 176(2): e14254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38499939

RESUMEN

Together with rice, weeds strive for nutrients and space in farmland, resulting in reduced rice yield and quality. Planting herbicide-resistant rice varieties is one of the effective ways to control weeds. In recent years, a series of breakthroughs have been made to generate herbicide-resistant germplasm, especially the emergence of biotechnological tools such as gene editing, which provides an inherent advantage for the knock-out or knock-in of the desired genes. In order to develop herbicide-resistant rice germplasm resources, gene manipulation has been conducted to enhance the herbicide tolerance of rice varieties through the utilization of techniques such as physical and chemical mutagenesis, as well as genome editing. Based on the current research and persisting problems in rice paddy fields, research on the generation of herbicide-resistant rice still needs to explore genetic mechanisms, stacking multiple resistant genes in a single genotype, and transgene-free genome editing using the CRISPR system. Current rapidly developing gene editing technologies can be used to mutate herbicide target genes, enabling targeted genes to maintain their biological functions, and reducing the binding ability of target gene encoded proteins to corresponding herbicides, ultimately resulting in herbicide-resistant crops. In this review article, we have summarized the utilization of conventional and modern approaches to develop herbicide-resistant cultivars in rice as an effective strategy for weed control in paddy fields, and discussed the technology and research directions for creating herbicide-resistant rice in the future.


Asunto(s)
Herbicidas , Oryza , Oryza/genética , Herbicidas/farmacología , Malezas , Biotecnología , Productos Agrícolas/genética , Resistencia a los Herbicidas/genética
2.
Physiol Plant ; 176(4): e14416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952344

RESUMEN

Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Frutas/genética , Frutas/efectos de los fármacos , Frutas/metabolismo , Vanadio/farmacología , Estrés Fisiológico/genética , Caragana/genética , Caragana/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Perfilación de la Expresión Génica , Sequías , Transcriptoma/genética , Transcriptoma/efectos de los fármacos , Cactaceae
3.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361700

RESUMEN

Abiotic stresses, such as drought, salinity, heat, cold, and heavy metals, are associated with global climate change and hamper plant growth and development, affecting crop yields and quality. However, the negative effects of abiotic stresses can be mitigated through exogenous treatments using small biomolecules. For example, the foliar application of melatonin provides the following: it protects the photosynthetic apparatus; it increases the antioxidant defenses, osmoprotectant, and soluble sugar levels; it prevents tissue damage and reduces electrolyte leakage; it improves reactive oxygen species (ROS) scavenging; and it increases biomass, maintains the redox and ion homeostasis, and improves gaseous exchange. Glutathione spray upregulates the glyoxalase system, reduces methylglyoxal (MG) toxicity and oxidative stress, decreases hydrogen peroxide and malondialdehyde accumulation, improves the defense mechanisms, tissue repairs, and nitrogen fixation, and upregulates the phytochelatins. The exogenous application of proline enhances growth and other physiological characteristics, upregulates osmoprotection, protects the integrity of the plasma lemma, reduces lipid peroxidation, increases photosynthetic pigments, phenolic acids, flavonoids, and amino acids, and enhances stress tolerance, carbon fixation, and leaf nitrogen content. The foliar application of glycine betaine improves growth, upregulates osmoprotection and osmoregulation, increases relative water content, net photosynthetic rate, and catalase activity, decreases photorespiration, ion leakage, and lipid peroxidation, protects the oxygen-evolving complex, and prevents chlorosis. Chemical priming has various important advantages over transgenic technology as it is typically more affordable for farmers and safe for plants, people, and animals, while being considered environmentally acceptable. Chemical priming helps to improve the quality and quantity of the yield. This review summarizes and discusses how exogenous melatonin, glutathione, proline, and glycine betaine can help crops combat abiotic stresses.


Asunto(s)
Melatonina , Melatonina/metabolismo , Betaína/farmacología , Betaína/metabolismo , Prolina/farmacología , Prolina/metabolismo , Glutatión/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Fisiológico/fisiología
4.
Curr Issues Mol Biol ; 43(3): 1950-1976, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34889892

RESUMEN

Genome editing (GE) has revolutionized the biological sciences by creating a novel approach for manipulating the genomes of living organisms. Many tools have been developed in recent years to enable the editing of complex genomes. Therefore, a reliable and rapid approach for increasing yield and tolerance to various environmental stresses is necessary to sustain agricultural crop production for global food security. This critical review elaborates the GE tools used for crop improvement. These tools include mega-nucleases (MNs), such as zinc-finger nucleases (ZFNs), and transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Specifically, this review addresses the latest advancements in the role of CRISPR/Cas9 for genome manipulation for major crop improvement, including yield and quality development of biotic stress- and abiotic stress-tolerant crops. Implementation of this technique will lead to the production of non-transgene crops with preferred characteristics that can result in enhanced yield capacity under various environmental stresses. The CRISPR/Cas9 technique can be combined with current and potential breeding methods (e.g., speed breeding and omics-assisted breeding) to enhance agricultural productivity to ensure food security. We have also discussed the challenges and limitations of CRISPR/Cas9. This information will be useful to plant breeders and researchers in the thorough investigation of the use of CRISPR/Cas9 to boost crops by targeting the gene of interest.


Asunto(s)
Sistemas CRISPR-Cas , Productos Agrícolas/genética , Edición Génica , Fitomejoramiento , Resistencia a la Enfermedad/genética , Calidad de los Alimentos , Abastecimiento de Alimentos , Ingeniería Genética , Genoma de Planta , Genómica/métodos , Plantas Modificadas Genéticamente
5.
BMC Genomics ; 20(1): 813, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694534

RESUMEN

BACKGROUND: Nsa cytoplasmic male sterility (CMS) is a novel alloplasmic male sterility system derived from somatic hybridization between Brassica napus and Sinapis arvensis. Identification of the CMS-associated gene is a prerequisite for a better understanding of the origin and molecular mechanism of this CMS. With the development of genome sequencing technology, organelle genomes of Nsa CMS line and its maintainer line were sequenced by pyro-sequencing technology, and comparative analysis of the organelle genomes was carried out to characterize the organelle genome composition of Nsa CMS as well as to identify the candidate Nsa CMS-associated genes. RESULTS: Nsa CMS mitochondrial genome showed a higher collinearity with that of S. arvensis than B. napus, indicating that Nsa CMS mitochondrial genome was mainly derived from S. arvensis. However, mitochondrial genome recombination of parental lines was clearly detected. In contrast, the chloroplast genome of Nsa CMS was highly collinear with its B. napus parent, without any evidence of recombination of the two parental chloroplast genomes or integration from S. arvensis. There were 16 open reading frames (ORFs) specifically existed in Nsa CMS mitochondrial genome, which could not be identified in the maintainer line. Among them, three ORFs (orf224, orf309, orf346) possessing chimeric and transmembrane structure are most likely to be the candidate CMS genes. Sequences of all three candidate CMS genes in Nsa CMS line were found to be 100% identical with those from S. arvensis mitochondrial genome. Phylogenetic and homologous analysis showed that all the mitochondrial genes were highly conserved during evolution. CONCLUSIONS: Nsa CMS contains a recombined mitochondrial genome of its two parental species with the majority form S. arvensis. Three candidate Nsa CMS genes were identified and proven to be derived from S. arvensis other than recombination of its two parental species. Further functional study of the candidate genes will help to identify the gene responsible for the CMS and the underlying molecular mechanism.


Asunto(s)
Brassica napus/genética , Brassica napus/fisiología , Citoplasma/genética , Genes de Plantas/genética , Genómica , Orgánulos/genética , Infertilidad Vegetal/genética , Brassica napus/citología , Genoma del Cloroplasto/genética , Genoma Mitocondrial/genética , Sistemas de Lectura Abierta/genética
6.
BMC Plant Biol ; 19(1): 500, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729952

RESUMEN

BACKGROUND: Plant height is one of the most important agronomic traits in many crops due to its influence on lodging resistance and yield performance. Although progress has been made in the use of dwarfing genes in crop improvement, identification of new dwarf germplasm is still of significant interest for breeding varieties with increased yield. RESULTS: Here we describe a dominant, dwarf mutant G7 of Brassica napus with down-curved leaves derived from tissue culture. To explore the genetic variation responsible for the dwarf phenotype, the mutant was crossed to a conventional line to develop a segregating F2 population. Bulks were formed from plants with either dwarf or conventional plant height and subjected to high throughput sequencing analysis via mutation mapping (MutMap). The dwarf mutation was mapped to a 0.6 Mb interval of B. napus chromosome C05. Candidate gene analysis revealed that one SNP causing an amino acid change in the domain II of Bna.IAA7.C05 may contribute to the dwarf phenotype. This is consistent with the phenotype of a gain-of-function indole-3-acetic acid (iaa) mutant in Bna.IAA7.C05 reported recently. GO and KEGG analysis of RNA-seq data revealed the down-regulation of auxin related genes, including many other IAA and small up regulated response (SAUR) genes, in the dwarf mutant. CONCLUSION: Our studies characterize a new allele of Bna.IAA7.C05 responsible for the dwarf mutant generated from tissue culture. This may provide a valuable genetic resource for breeding for lodging resistance and compact plant stature in B. napus.


Asunto(s)
Brassica napus/genética , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Alelos , Brassica napus/crecimiento & desarrollo , Brassica napus/fisiología , Mutación , Fenotipo , Fitomejoramiento , Técnicas de Cultivo de Tejidos
7.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30545163

RESUMEN

The interaction between plant mitochondria and the nucleus markedly influences stress responses and morphological features, including growth and development. An important example of this interaction is cytoplasmic male sterility (CMS), which results in plants producing non-functional pollen. In current research work, we compared the phenotypic differences in floral buds of different Brassica napus CMS (Polima, Ogura, Nsa) lines with their corresponding maintainer lines. By comparing anther developmental stages between CMS and maintainer lines, we identified that in the Nsa CMS line abnormality occurred at the tetrad stage of pollen development. Phytohormone assays demonstrated that IAA content decreased in sterile lines as compared to maintainer lines, while the total hormone content was increased two-fold in the S2 stage compared with the S1 stage. ABA content was higher in the S1 stage and exhibited a two-fold decreasing trend in S2 stage. Sterile lines however, had increased ABA content at both stages compared with the corresponding maintainer lines. Through transcriptome sequencing, we compared differentially expressed unigenes in sterile and maintainer lines at both (S1 and S2) developmental stages. We also explored the co-expressed genes of the three sterile lines in the two stages and classified these genes by gene function. By analyzing transcriptome data and validating by RT-PCR, it was shown that some transcription factors (TFs) and hormone-related genes were weakly or not expressed in the sterile lines. This research work provides preliminary identification of the pollen abortion stage in Nsa CMS line. Our focus on genes specifically expressed in sterile lines may be useful to understand the regulation of CMS.


Asunto(s)
Brassica napus/genética , Citoplasma/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Infertilidad Vegetal/genética , Transcriptoma/genética , Flores/anatomía & histología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Fenotipo , Reproducibilidad de los Resultados
8.
Sci Rep ; 14(1): 13751, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877112

RESUMEN

While spot spraying has gained increasing popularity in recent years, spot application of granule agrochemical has seen little development. Despite the potential for the technology, there currently exists no commercially available granular applicators capable of spot application. Therefore, the goal of this study was to design, build, and lab evaluate a precision applicator for spot applying granular agrochemical in wild blueberry. The design incorporated a John Deere RC2000 with a custom control box, recirculation system, and electrically actuated valves. All components were modified to fit a Valmar 1255 Twin-Roller. The system receives inputs from a predeveloped prescription map and can actuate each of the twelve valves separately to provide individual orifice control. Casoron® G4 was used as the testing agrochemical and in cycling the product pneumatically for 1 hour incurred no significant product degradation (p = 0.110). In lab evaluations, the applicator encountered zero errors in reading prescription maps and actuating the correct valves accordingly. Further, the granule recycling system had zero instances where product built up in the lines or jammed the valves. In all, this project represents the first successful development of a precision granular spot applicator for any cropping system.


Asunto(s)
Agroquímicos , Arándanos Azules (Planta) , Agroquímicos/farmacología
9.
Sci Rep ; 14(1): 10016, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693219

RESUMEN

Agricultural dykelands in Nova Scotia rely heavily on a surface drainage technique called land forming, which is used to alter the topography of fields to improve drainage. The presence of land-formed fields provides useful information to better understand land utilization on these lands vulnerable to rising sea levels. Current field boundaries delineation and classification methods, such as manual digitalization and traditional segmentation techniques, are labour-intensive and often require manual and time-consuming parameter selection. In recent years, deep learning (DL) techniques, including convolutional neural networks and Mask R-CNN, have shown promising results in object recognition, image classification, and segmentation tasks. However, there is a gap in applying these techniques to detecting surface drainage patterns on agricultural fields. This paper develops and tests a Mask R-CNN model for detecting land-formed fields on agricultural dykelands using LiDAR-derived elevation data. Specifically, our approach focuses on identifying groups of pixels as cohesive objects within the imagery, a method that represents a significant advancement over pixel-by-pixel classification techniques. The DL model developed in this study demonstrated a strong overall performance, with a mean Average Precision (mAP) of 0.89 across Intersection over Union (IoU) thresholds from 0.5 to 0.95, indicating its effectiveness in detecting land-formed fields. Results also revealed that 53% of Nova Scotia's dykelands are being used for agricultural purposes and approximately 75% (6924 hectares) of these fields were land-formed. By applying deep learning techniques to LiDAR-derived elevation data, this study offers novel insights into surface drainage mapping, enhancing the capability for precise and efficient agricultural land management in regions vulnerable to environmental changes.

10.
PLoS One ; 19(1): e0297473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38277374

RESUMEN

The Ovate Family Proteins (OFPs) gene family houses a class of proteins that are involved in regulating plant growth and development. To date, there is no report of the simultaneous functional characterization of this gene family in all members of U's Triangle of Brassica. Here, we retrieved a combined total of 256 OFP protein sequences and analyzed their chromosomal localization, gene structure, conserved protein motif domains, and the pattern of cis-acting regulatory elements. The abundance of light-responsive elements like G-box, MRE, and GT1 motif suggests that OFPs are sensitive to the stimuli of light. The protein-protein interaction network analysis revealed that OFP05 and its orthologous genes were involved in regulating the process of transcriptional repression through their interaction with homeodomain transcription factors like KNAT and BLH. The presence of domains like DNA binding 2 and its superfamily speculated the involvement of OFPs in regulating gene expression. The biotic and abiotic stress, and the tissue-specific expression analysis of the RNA-seq datasets revealed that some of the genes such as BjuOFP30, and BnaOFP27, BolOFP11, and BolOFP10 were highly upregulated in seed coat at the mature stage and roots under various chemical stress conditions respectively which suggests their crucial role in plant growth and development processes. Experimental validation of prominent BnaOFPs such as BnaOFP27 confirmed their involvement in regulating gene expression under salinity, heavy metal, drought, heat, and cold stress. The GO and KEGG pathway enrichment analysis also sheds light on the involvement of OFPs in regulating plant growth and development. These findings have the potential to serve as a forerunner for future studies in terms of functionally diverse analysis of the OFP gene family in Brassica and other plant species.


Asunto(s)
Brassica , Brassica/genética , Filogenia , Factores de Transcripción/genética , Estrés Fisiológico/genética , Mapas de Interacción de Proteínas , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Genoma de Planta
11.
Funct Plant Biol ; 512024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38569561

RESUMEN

DNA binding proteins with one finger (Dof ) transcription factors are essential for seed development and defence against various biotic and abiotic stresses in plants. Genomic analysis of Dof has not been determined yet in pitaya (Selenicereus undatus ). In this study, we have identified 26 Dof gene family members, renamed as HuDof-1 to HuDof-26 , and clustered them into seven subfamilies based on conserved motifs, domains, and phylogenetic analysis. The gene pairs of Dof family members were duplicated by segmental duplications that faced purifying selection, as indicated by the K a /K s ratio values. Promoter regions of HuDof genes contain many cis -acting elements related to phytohormones including abscisic acid, jasmonic acid, gibberellin, temperature, and light. We exposed pitaya plants to different environmental stresses and examined melatonin's influence on Dof gene expression levels. Signifcant expression of HuDof -2 and HuDof -6 were observed in different developmental stages of flower buds, flowers, pericarp, and pulp. Pitaya plants were subjected to abiotic stresses, and transcriptome analysis was carried out to identify the role of Dof gene family members. RNA-sequencing data and reverse transcription quantitative PCR-based expression analysis revealed three putative candidate genes (HuDof -1, HuDof -2, and HuDof -8), which might have diverse roles against the abiotic stresses. Our study provides a theoretical foundation for functional analysis through traditional and modern biotechnological tools for pitaya trait improvement.


Asunto(s)
Cactaceae , Melatonina , Filogenia , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Genomics Proteomics Bioinformatics ; 21(1): 108-126, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35341983

RESUMEN

The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants, as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genome editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring algorithms and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduce the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focus on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights into the limitations of available computational tools that would help researchers of this field for further optimization. Lastly, we suggest a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas genome editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Genoma , Genómica
13.
Front Plant Sci ; 14: 1152468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409308

RESUMEN

CRISPR-mediated genome editing has emerged as a powerful tool for creating targeted mutations in the genome for various applications, including studying gene functions, engineering resilience against biotic and abiotic stresses, and increasing yield and quality. However, its utilization is limited to model crops for which well-annotated genome sequences are available. Many crops of dietary and economic importance, such as wheat, cotton, rapeseed-mustard, and potato, are polyploids with complex genomes. Therefore, progress in these crops has been hampered due to genome complexity. Excellent work has been conducted on some species of Brassica for its improvement through genome editing. Although excellent work has been conducted on some species of Brassica for genome improvement through editing, work on polyploid crops, including U's triangle species, holds numerous implications for improving other polyploid crops. In this review, we summarize key examples from genome editing work done on Brassica and discuss important considerations for deploying CRISPR-mediated genome editing more efficiently in other polyploid crops for improvement.

14.
Trends Biotechnol ; 41(11): 1335-1338, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37258389

RESUMEN

CRISPR/Cas9 gene technology is transported as RNA from transgenic roots to distal parts of unmodified grafted scion, where it is translated into proteins to induce heritable mutagenesis at desired loci. This technique has the potential to produce transgene-free and genetically stable plants in difficult-to-propagate and near-extinct species.

15.
Sci Rep ; 13(1): 10198, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353530

RESUMEN

An operator of a wild blueberry harvester faces the fatigue of manually adjusting the height of the harvester's head, considering spatial variations in plant height, fruit zone, and field topography affecting fruit yield. For stress-free harvesting of wild blueberries, a deep learning-supported machine vision control system has been developed to detect the fruit height and precisely auto-adjust the header picking teeth rake position. The OpenCV AI Kit (OAK-D) was used with YOLOv4-tiny deep learning model with code developed in Python to solve the challenge of matching fruit heights with the harvester's head position. The system accuracy was statistically evaluated with R2 (coefficient of determination) and σ (standard deviation) measured on the difference in distances between the berries picking teeth and average fruit heights, which were 72, 43% and 2.1, 2.3 cm for the auto and manual head adjustment systems, respectively. This innovative system performed well in weed-free areas but requires further work to operate in weedy sections of the fields. Benefits of using this system include automated control of the harvester's head to match the header picking rake height to the level of the fruit height while reducing the operator's stress by creating safer working environments.


Asunto(s)
Arándanos Azules (Planta) , Aprendizaje Profundo , Abuso de Marihuana , Fatiga , Frutas
16.
Trends Biotechnol ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37993299

RESUMEN

The CRISPR/Cas system comprises RNA-guided nucleases, the target specificity of which is directed by Watson-Crick base pairing of target loci with single guide (sg)RNA to induce the desired edits. CRISPR-associated proteins and other engineered nucleases are opening new avenues of research in crops to induce heritable mutations. Here, we review the diversity of CRISPR-associated proteins and strategies to deregulate genome-edited (GEd) crops by considering them to be close to natural processes. This technology ensures yield without penalties, advances plant breeding, and guarantees manipulation of the genome for desirable traits. DNA-free and off-target-free GEd crops with defined characteristics can help to achieve sustainable global food security under a changing climate, but need alignment of international regulations to operate in existing supply chains.

17.
GM Crops Food ; 14(1): 1-27, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37288976

RESUMEN

The daunting task of feeding an ever-growing population is an immense challenge for the contemporary scientific community, especially in view of the rapidly changing climate throughout the world. Amidst these threatening crises, we witness rapid development in genome editing (GE) technologies, revolutionizing the field of applied genomics and molecular breeding. Various GE tools have been developed during the last two decades, but the CRISPR/Cas system has most recently made a significant impact on crop improvement. The major breakthroughs of this versatile toolbox are genomic modifications like single base-substitutions, multiplex GE, gene regulation, screening mutagenesis, and enhancing the breeding of wild crop plants. Previously, this toolbox was used to modify genes related to significant traits such as biotic/abiotic resistance/tolerance, post-harvest traits, nutritional regulation, and to address self-incompatibility analysis-related challenges. In the present review, we have demonstrated the functional dynamics of CRISPR-based GE and its applicability in targeting genes to accomplish novel editing of crops. The compiled knowledge will provide a solid foundation for highlighting the primary source for applying CRISPR/Cas as a toolbox for enhancing crops, to achieve food and nutritional security.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Plantas Modificadas Genéticamente/genética , Genoma de Planta/genética , Fitomejoramiento , Productos Agrícolas/genética
18.
Biology (Basel) ; 12(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36671704

RESUMEN

The GRAS gene family is one of the most important families of transcriptional factors that have diverse functions in plant growth and developmental processes including axillary meristem patterning, signal-transduction, cell maintenance, phytohormone and light signaling. Despite their importance, the function of GRAS genes in pitaya fruit (Selenicereus undatus L.) remains unknown. Here, 45 members of the HuGRAS gene family were identified in the pitaya genome, which was distributed on 11 chromosomes. All 45 members of HuGRAS were grouped into nine subfamilies using phylogenetic analysis with six other species: maize, rice, soybeans, tomatoes, Medicago truncatula and Arabidopsis. Among the 45 genes, 12 genes were selected from RNA-Seq data due to their higher expression in different plant tissues of pitaya. In order to verify the RNA-Seq data, these 12 HuGRAS genes were subjected for qRT-PCR validation. Nine HuGRAS genes exhibited higher relative expression in different tissues of the plant. These nine genes which were categorized into six subfamilies inlcuding DELLA (HuGRAS-1), SCL-3 (HuGRAS-7), PAT1 (HuGRAS-34, HuGRAS-35, HuGRAS-41), HAM (HuGRAS-37), SCR (HuGRAS-12) and LISCL (HuGRAS-18, HuGRAS-25) might regulate growth and development in the pitaya plant. The results of the present study provide valuable information to improve tropical pitaya through a molecular and conventional breeding program.

19.
J Environ Sci Health B ; 46(4): 366-79, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21547825

RESUMEN

Land application of biosolids from processed sewage sludge may deteriorate soil, water, and plants. We investigated the impact of the N-Viro biosolids land-application on the quality of the soil water that moved through Orthic Humo-Ferric Podzols soil of Nova Scotia (NS) at the Wild Blueberry Research Institute, Debert, NS Canada. In addition, the response of major soilproperties and crop yield was also studied. Wild blueberry (Vaccinium angustifolium. Ait) was grown under irrigated and rainfed conditions in 2008 and 2009. Four experimental treatments including (i) NI: N-Viro irrigated, (ii) NR: N-Viro rainfed, (iii) FI: inorganic fertilizer irrigated, and (iv) FR: inorganic fertilizer rainfed (control) were replicated 4 times under randomized complete block design. Soil samples were collected at the end of each year and analyzed for changes in cation exchange capacity (CEC), soil organic matter (SOM), and pH.Soil water samples were collected four times during the study period from the suction cup lysimeters installed within and below crop root zone at 20 and 40 cm depths, respectively. The samples were analyzed for a range of water quality parameters including conductance, hardness, pH, macro- and micronutrients, and the infectious pathogens Escherichia coli (E. coli) and salmonella. Berries were harvested for fruit yield estimates. Irrigation significantly increased CEC during 2008 and the soil pH decreased from 4.93 (2008) to 4.79 (2009). There were significant influences of irrigation, fertilizer, and their interaction, in some cases, on most of the soil water quality parameters except on the infectious bacteria. No presence of E. coli or salmonella were observed in soil and water samples, reflecting the absence of these bacteria in biosolids used in this experiment. Nutrient concentration in the soil water samples collected from the four treatments were higher in the sequence NI > NR > FI > FR. The irrigation treatment had significant effect on the unripe fruit yield. We conclude that the comparable performance of N-Viro biosolids and the increasing prices of inorganic fertilizers would compel farmers to use economically available N-Viro biosolids that, coupled with the supplemental irrigation, did not deteriorate the studied soil properties, soil water quality, and the wild blueberry yield during this experiment.


Asunto(s)
Arándanos Azules (Planta)/crecimiento & desarrollo , Fertilizantes/análisis , Eliminación de Residuos , Aguas del Alcantarillado/química , Contaminantes del Suelo/análisis , Abastecimiento de Agua/análisis , Agricultura , Arándanos Azules (Planta)/fisiología , Fertilizantes/economía , Nueva Escocia , Aguas del Alcantarillado/microbiología , Suelo/química , Microbiología del Agua
20.
GM Crops Food ; 12(1): 251-281, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33464960

RESUMEN

Plant abiotic stresses negative affects growth and development, causing a massive reduction in global agricultural production. Rapeseed (Brassica napus L.) is a major oilseed crop because of its economic value and oilseed production. However, its productivity has been reduced by many environmental adversities. Therefore, it is a prime need to grow rapeseed cultivars, which can withstand numerous abiotic stresses. To understand the various molecular and cellular mechanisms underlying the abiotic stress tolerance and improvement in rapeseed, omics approaches have been extensively employed in recent years. This review summarized the recent advancement in genomics, transcriptomics, proteomics, metabolomics, and their imploration in abiotic stress regulation in rapeseed. Some persisting bottlenecks have been highlighted, demanding proper attention to fully explore the omics tools. Further, the potential prospects of the CRISPR/Cas9 system for genome editing to assist molecular breeding in developing abiotic stress-tolerant rapeseed genotypes have also been explained. In short, the combination of integrated omics, genome editing, and speed breeding can alter rapeseed production worldwide.


Asunto(s)
Brassica napus , Brassica napus/genética , Productos Agrícolas/genética , Edición Génica , Fitomejoramiento , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA