Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mil Med Res ; 10(1): 13, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36907884

RESUMEN

BACKGROUND: Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis. We hypothesized that pericytes, a group of pluripotent cells that maintain vascular integrity and tension, are protective against sepsis via regulating vascular reactivity and permeability. METHODS: We conducted a series of in vivo experiments using wild-type (WT), platelet-derived growth factor receptor beta (PDGFR-ß)-Cre + mT/mG transgenic mice and Tie2-Cre + Cx43flox/flox mice to examine the relative contribution of pericytes in sepsis, either induced by cecal ligation and puncture (CLP) or lipopolysaccharide (LPS) challenge. In a separate set of experiments with Sprague-Dawley (SD) rats, pericytes were depleted using CP-673451, a selective PDGFR-ß inhibitor, at a dosage of 40 mg/(kg·d) for 7 consecutive days. Cultured pericytes, vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were used for mechanistic investigations. The effects of pericytes and pericyte-derived microvesicles (PCMVs) and candidate miRNAs on vascular reactivity and barrier function were also examined. RESULTS: CLP and LPS induced severe injury/loss of pericytes, vascular hyporeactivity and leakage (P < 0.05). Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization (P < 0.05). Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels (P < 0.05). Additionally, PCMVs transferred miR-145 and miR-132 to VSMCs and VECs, respectively, exerting a protective effect on vascular reactivity and barrier function after sepsis (P < 0.05). miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2 (Sphk2)/sphingosine-1-phosphate receptor (S1PR)1/phosphorylation of myosin light chain 20 pathway, whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways. CONCLUSIONS: Pericytes are protective against sepsis through regulating vascular reactivity and barrier function. Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs.


Asunto(s)
MicroARNs , Sepsis , Animales , Ratones , Ratas , Permeabilidad Capilar/fisiología , Conexina 43/metabolismo , Células Endoteliales/metabolismo , Lipopolisacáridos/farmacología , MicroARNs/farmacología , Pericitos/metabolismo , Ratas Sprague-Dawley
2.
J Trauma Acute Care Surg ; 87(6): 1336-1345, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31389921

RESUMEN

BACKGROUND: Vascular dysfunction is a major cause of sepsis-induced multiple-organ dysfunction. Resveratrol is a polyphenol compound with extensive pharmacological effects including anti-inflammation. The aim of this study was to determine the role and mechanism of resveratrol in protecting vascular function following sepsis. METHODS: The cecal ligation and puncture method was used to establish a septic shock rat model. Resveratrol (5 mg/kg and 10 mg/kg) was administered intravenously immediately and at 12 hours after cecal ligation and puncture, respectively. The effects of resveratrol on vasodilatation function, blood flow velocity, hemodynamics, and vital organ function and its relationship to Rac-1 and HIF-1α were observed. RESULTS: Vascular relaxation reactivity and blood flow velocity were significantly decreased after septic shock, both were significantly improved by resveratrol 5 mg/kg and 10 mg/kg, and the effect of 10 mg/kg was greater. The relaxation reactivity of the superior mesenteric artery to acetylcholine (Ach) was increased by 43.2%. The blood flow velocity of mesenteric arterioles and venules was increased by 47.1% and 51%, respectively, after resveratrol (10 mg/kg) administration compared with the septic shock group. The hemodynamics and both liver and kidney blood flow were significantly decreased after septic shock, which were significantly improved them by resveratrol, which enhanced the vascular relaxation reactivity in septic shock rats. The 72-hour survival rate of septic shock rats in the resveratrol group (62.5%) was significantly higher than that in the septic shock group (6.3%). Resveratrol significantly upregulated the expression of endothelial nitric oxide synthase (eNOS) and downregulated the expression of inducible NOS, Rac-1, and HIF-1α. Inhibitors of Rac-1 and HIF-1α significantly improved the expression of eNOS, and inhibition of eNOS (L-NAME, 5 mg/kg) antagonized the resveratrol-induced improvement in vascular relaxation reactivity and survival. CONCLUSION: Resveratrol was beneficial for vasodilatation function in rats with septic shock, which is the major contribution to resveratrol improving hemodynamics and organ perfusion. The mechanism involved resveratrol upregulating the expression of eNOS by inhibiting Rac-1 and HIF-1α.


Asunto(s)
Resveratrol/farmacología , Choque Séptico/fisiopatología , Vasodilatación/efectos de los fármacos , Animales , Velocidad del Flujo Sanguíneo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Hemodinámica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/irrigación sanguínea , Hígado/irrigación sanguínea , Masculino , Microcirculación/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Resveratrol/uso terapéutico , Choque Séptico/tratamiento farmacológico , Choque Séptico/metabolismo , Circulación Esplácnica/efectos de los fármacos , Regulación hacia Arriba , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/metabolismo
3.
Shock ; 42(3): 239-45, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24827390

RESUMEN

Our previous study demonstrated that Rho kinase and protein kinase C (PKC) played important parts in the regulation of vascular reactivity after shock. Using superior mesenteric arteries (SMAs) from hemorrhagic shock rats and hypoxia-treated vascular smooth muscle cells (VSMCs), relationship of PKCε regulation of vascular reactivity to Rho kinase, as well as the signal transduction after shock, was investigated. The results showed that inhibition of Rho kinase with the Rho kinase-specific inhibitor Y-27632 antagonized the PKCε-specific agonist carbachol and highly expressed PKCε-induced increase of vascular reactivity in SMAs and VSMCs, whereas inhibition of PKCε with its specific inhibitory peptide did not antagonize the Rho kinase agonist (U-46619)-induced increase of vascular reactivity in SMAs and VSMCs. Activation of PKCε or highly expressed PKCε upregulated the activity of Rho kinase and the phosphorylation of PKC-dependent phosphatase inhibitor 17 (CPI-17), zipper interacting protein kinase (ZIPK), and integrin-linked kinase (ILK), whereas activation of Rho kinase increased only CPI-17 phosphorylation. The specific neutralization antibodies of ZIPK and ILK antagonized PKCε-induced increases in the activity of Rho kinase, but CPI-17 neutralization antibody did not antagonize this effect. These results suggested that Rho kinase takes part in the regulation of PKCε on vascular reactivity after shock. Rho kinase is downstream of PKCε. Protein kinase Cε activates Rho kinase via ZIPK and ILK; CPI-17 is downstream of Rho kinase.


Asunto(s)
Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Proteína Quinasa C-epsilon/metabolismo , Choque Hemorrágico/enzimología , Vasoconstricción , Quinasas Asociadas a rho/metabolismo , Animales , Células Cultivadas , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Activación Enzimática , Activadores de Enzimas/farmacología , Femenino , Técnicas In Vitro , Masculino , Arteria Mesentérica Superior/enzimología , Arteria Mesentérica Superior/fisiopatología , Proteínas Musculares/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/efectos de los fármacos , Perfusión , Fosfoproteínas/metabolismo , Fosforilación , Proteína Quinasa C-epsilon/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas Sprague-Dawley , Choque Hemorrágico/fisiopatología , Transducción de Señal , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA