Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Vet Res ; 54(1): 94, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848924

RESUMEN

Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. Most prion diseases and their susceptibility and pathogenesis are mainly modulated by the PRNP gene that codes for PrP. Mutations and polymorphisms in the PRNP gene can alter PrPC amino acid sequence, leading to a change in transmission efficiency depending on the place where it occurs. Horses are animals that are considered to be highly resistant to prions. Several studies have attempted to identify polymorphisms in the PRNP gene that explain the reason for this high resistance. In this study, we have analysed 207 horses from 20 different breeds, discovering 3 novel PRNP polymorphisms. By using computer programmes such as PolyPhen-2, PROVEAN, PANTHER, Meta-SNP and PredictSNP, we have predicted the possible impact that these new polymorphisms would have on the horse prion protein. In addition, we measured the propensity for amyloid aggregation using AMYCO and analysed the lack of hydrogen bridges that these changes would entail together with their electrostatic potentials using Swiss-PdbViewer software, showing that an increased amyloid propensity could be due to changes at the level of electrostatic potentials.


Asunto(s)
Enfermedades de los Caballos , Enfermedades por Prión , Priones , Animales , Secuencia de Aminoácidos , Enfermedades de los Caballos/genética , Caballos/genética , Polimorfismo Genético , Enfermedades por Prión/genética , Enfermedades por Prión/veterinaria , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/genética
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675131

RESUMEN

Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathies or prion diseases, which are caused by an infectious isoform of the innocuous cellular prion protein (PrPC) known as PrPSc. DNA methylation, one of the most studied epigenetic mechanisms, is essential for the proper functioning of the central nervous system. Recent findings point to possible involvement of DNA methylation in the pathogenesis of prion diseases, but there is still a lack of knowledge about the behavior of this epigenetic mechanism in such neurodegenerative disorders. Here, we evaluated by immunohistochemistry the 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels in sheep and mouse brain tissues infected with scrapie. Expression analysis of different gene coding for epigenetic regulatory enzymes (DNMT1, DNMT3A, DNMT3B, HDAC1, HDAC2, TET1, and TET2) was also carried out. A decrease in 5mC levels was observed in scrapie-affected sheep and mice compared to healthy animals, whereas 5hmC displayed opposite patterns between the two models, demonstrating a decrease in 5hmC in scrapie-infected sheep and an increase in preclinical mice. 5mC correlated with prion-related lesions in mice and sheep, but 5hmC was associated with prion lesions only in sheep. Differences in the expression changes of epigenetic regulatory genes were found between both disease models, being differentially expressed Dnmt3b, Hdac1, and Tet1 in mice and HDAC2 in sheep. Our results support the evidence that DNA methylation in both forms, 5mC and 5hmC, and its associated epigenetic enzymes, take part in the neurodegenerative course of prion diseases.


Asunto(s)
Encéfalo , Priones , Scrapie , Animales , Ratones , 5-Metilcitosina/metabolismo , Encéfalo/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Priones/genética , Priones/metabolismo , Scrapie/genética , Scrapie/metabolismo , Ovinos , Metilación de ADN/genética , Metilación de ADN/fisiología , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , ADN Metiltransferasa 3B
3.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802349

RESUMEN

Since NLRP3 inflammasome plays a pivotal role in several neurodegenerative disorders, we hypothesized that levels of inflammasome components could help in diagnosis or prognosis of amyotrophic lateral sclerosis (ALS). Gene and protein expression was assayed by RT-PCR and Western blot. Spearman's correlation coefficient was used to determine the linear correlation of transcriptional expression levels with longevity throughout disease progression in mice models. Kaplan-Meier analysis was performed to evaluate MCC950 effects (NLRP3 inhibitor) on lifespan of SOD1G93A mice. The results showed significant alterations in NLRP3 inflammasome gene and protein levels in the skeletal muscle of SOD1G93A mice. Spearman's correlation coefficient revealed a positive association between Nlrp3 transcriptional levels in skeletal muscle and longevity of SOD1G93A mice (r = 0.506; p = 0.027). Accordingly, NLRP3 inactivation with MCC950 decreased the lifespan of mice. Furthermore, NLRP3 mRNA levels were significantly elevated in the blood of ALS patients compared to healthy controls (p = 0.03). In conclusion, NLRP3 could be involved in skeletal muscle pathogenesis of ALS, either through inflammasome or independently, and may play a dual role during disease progression. NLRP3 gene expression levels could be used as a biomarker to improve diagnosis and prognosis in skeletal muscle from animal models and also to support diagnosis in clinical practice with the blood of ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/metabolismo , Inflamasomas/metabolismo , Músculo Esquelético/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Anciano , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Furanos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Indenos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos/metabolismo , Persona de Mediana Edad , Músculo Esquelético/efectos de los fármacos , Pronóstico , Sulfonamidas , Sulfonas/farmacología , Superóxido Dismutasa-1/metabolismo
4.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34201940

RESUMEN

Diagnosis of transmissible spongiform encephalopathies (TSEs), or prion diseases, is based on the detection of proteinase K (PK)-resistant PrPSc in post-mortem tissues as indication of infection and disease. Since PrPSc detection is not considered a reliable method for in vivo diagnosis in most TSEs, it is of crucial importance to identify an alternative source of biomarkers to provide useful alternatives for current diagnostic methodology. Ovine scrapie is the prototype of TSEs and has been known for a long time. Using this natural model of TSE, we investigated the presence of PrPSc in exosomes derived from plasma and cerebrospinal fluid (CSF) by protein misfolding cyclic amplification (PMCA) and the levels of candidate microRNAs (miRNAs) by quantitative PCR (qPCR). Significant scrapie-associated increase was found for miR-21-5p in plasma-derived but not in CSF-derived exosomes. However, miR-342-3p, miR-146a-5p, miR-128-3p and miR-21-5p displayed higher levels in total CSF from scrapie-infected sheep. The analysis of overexpressed miRNAs in this biofluid, together with plasma exosomal miR-21-5p, could help in scrapie diagnosis once the presence of the disease is suspected. In addition, we found the presence of PrPSc in most CSF-derived exosomes from clinically affected sheep, which may facilitate in vivo diagnosis of prion diseases, at least during the clinical stage.


Asunto(s)
Biomarcadores , Vesículas Extracelulares/metabolismo , MicroARNs/genética , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/ultraestructura , MicroARNs/sangre , MicroARNs/líquido cefalorraquídeo , Enfermedades por Prión/sangre , Enfermedades por Prión/líquido cefalorraquídeo
5.
Lab Invest ; 100(1): 52-63, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31477795

RESUMEN

Autophagy appears to play a role in the etiology and progress of misfolded protein disorders. Although this process is dysregulated in prion diseases, it is unknown whether this impairment is a cause or a consequence of prion neuropathology. The study of autophagy during the progress of the disease could elucidate its role. For this purpose, we have investigated its regulation at different stages of the disease in Tg338 mice, a transgenic murine model that overexpresses the highly susceptible ovine VRQ prion protein allele. Mice were intracerebrally inoculated with mouse-adapted classical scrapie and euthanized at the preclinical and clinical stages of the disease. Regulation of autophagy was investigated analyzing the distribution of LC3-B and p62 proteins by immunohistochemistry. Moreover, the expression of genes involved in autophagy regulation was quantified by real-time PCR. LC3-B and p62 proteins were downregulated and upregulated, respectively, in the central nervous system of infected mice with clinical signs of scrapie. Accumulation of p62 correlated with scrapie-related lesions, suggesting an impairment of autophagy in highly prion-affected areas. In addition, Gas5 (growth arrest-specific 5), Atg5 (autophagy-related 5), and Fbxw7 (F-box and WD repeat domain containing 7) transcripts were downregulated in mesencephalon and cervical spinal cord of the same group of animals. The impairment of autophagic machinery seems to be part of the pathological process of scrapie, but only during the late stage of prion infection. Similarities between Tg338 mice and the natural ovine disease make them a reliable in vivo model to study prion infection and autophagy side by side.


Asunto(s)
Autofagia , Modelos Animales de Enfermedad , Scrapie/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Médula Cervical/metabolismo , Ratones Transgénicos , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Scrapie/etiología , Scrapie/patología , Ovinos
6.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339180

RESUMEN

Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential non-invasive biomarkers of NDDs. In this review, we summarize the ceRNA networks described in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and spinocerebellar ataxia type 7, and discuss their potential as biomarkers of these NDDs. Although numerous studies have been carried out, further research is needed to validate these complex interactions between RNAs and the alterations in RNA editing that could provide specific ceRNET profiles for neurodegenerative disorders, paving the way to a better understanding of these diseases.


Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , Redes Reguladoras de Genes , Enfermedades Neurodegenerativas/sangre , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/orina , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/orina , Humanos , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/orina
7.
BMC Vet Res ; 14(1): 241, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30119668

RESUMEN

BACKGROUND: This study aimed at assessing the effectiveness and safety of repeated administrations of allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) primed with tumor necrosis factor (TNF)-α and interferon-γ in an equine model of chemically-induced osteoarthritis. Arthritis was induced in both radio-carpal (RC)-joints by amphotericin-B in 18 ponies, divided into three groups depending on the treatment injected: MSC-naïve (n = 7), MSC-primed (n = 7) and control (n = 4). The study consisted of two phases and used one RC-joint of each animal in each phase, with four months time-lapse, in order to assess two end-points. Clinical, synovial, radiological and ultrasonographic follow-up was performed. At six months, animals were euthanized and both carpi were assessed by magnetic resonance imaging (MRI), gross anatomy, histopathology, histochemistry and gene expression. RESULTS: Clinical and synovial inflammatory signs were quicker reduced in MSC-treated groups and repeated allogeneic administration did not produce adverse reactions, but MSC-primed group showed slight and transient local inflammation after second injection. Radiology and MRI did not show significant differences between treated and control groups, whereas ultrasonography suggested reduced synovial effusion in MSC-treated groups. Both MSC-treated groups showed enhanced cartilage gross appearance at two compared to six months (MSC-naïve, p < 0.05). Cartilage histopathology did not reveal differences but histochemistry suggested delayed progression of proteoglycan loss in MSC-treated groups. Synovium histopathology indicated decreased inflammation (p < 0.01) in MSC-primed and MSC-naïve at two and six months, respectively. At two months, cartilage from MSC-primed group significantly (p < 0.05) upregulated collagen type II (COL2A1) and transforming growth factor (TGF)-ß1 and downregulated cyclooxygenase-2 and interleukin (IL)-1ß. At six months, MSC-treatments significantly downregulated TNFα (p < 0.05), plus MSC-primed upregulated (p < 0.05) COL2A1, aggrecan, cartilage oligomeric protein, tissue inhibitor of metalloproteinases-2 and TGF-ß1. In synovium, both MSC-treatments decreased (p < 0.01) matrix metalloproteinase-13 expression at two months and MSC-primed also downregulated TNFα (p < 0.05) and IL-1ß (p < 0.01). CONCLUSIONS: Both MSC-treatments provided beneficial effects, mostly observed at short-term. Despite no huge differences between MSC-treatments, the findings suggested enhanced anti-inflammatory and regulatory potential of MSC-primed. While further research is needed to better understand these effects and clarify immunogenicity implications, these findings contribute to enlarge the knowledge about MSC therapeutics and how they could be influenced.


Asunto(s)
Enfermedades de los Caballos/terapia , Inflamación/veterinaria , Trasplante de Células Madre Mesenquimatosas , Osteoartritis/veterinaria , Anfotericina B/administración & dosificación , Animales , Enfermedades de los Caballos/inducido químicamente , Caballos , Interferón gamma/farmacología , Masculino , Osteoartritis/inducido químicamente , Osteoartritis/terapia , Membrana Sinovial/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
8.
J Gen Virol ; 98(2): 305-310, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27959774

RESUMEN

Scrapie is a transmissible spongiform encephalopathy (TSE), or prion disease, of sheep and goats. As no simple diagnostic tests are yet available to detect TSEs in vivo, easily accessible biomarkers could facilitate the eradication of scrapie agents from the food chain. To this end, we analysed by quantitative reverse transcription PCR a selected set of candidate microRNAs (miRNAs) from circulating blood plasma of naturally infected, classical scrapie sheep that demonstrated clear scrapie symptoms and pathology. Significant scrapie-associated increase was repeatedly found for miR-342-3p and miR-21-5p. This is the first demonstration, to our knowledge, of circulating miRNA alterations in any animal suffering from TSE. Genome-wide expression studies are warranted to investigate the true depth of miRNA alterations in naturally occurring TSEs, especially in presymptomatic animals, as the presented study demonstrates the potential feasibility of miRNAs as circulating TSE biomarkers.


Asunto(s)
MicroARNs/sangre , Scrapie/sangre , Animales , Biomarcadores/sangre , Sistema Nervioso Central/patología , MicroARNs/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Scrapie/genética , Scrapie/patología , Ovinos
9.
Cell Biol Int ; 41(12): 1399-1405, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28851070

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are attractive targets in regenerative medicine, although the differences in their homeostatic maintenance between sexes along time are still under debate. We accurately monitored hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs) frequencies by flow cytometry, by performing serial peripheral blood extractions from male and female B6SJL wild-type mice and found no significant differences. Only modest differences were found in the gene expression profile of Slamf1 and Gata2. Our findings suggest that both sexes could be used indistinctly to perform descriptive studies in the murine hematopoietic system, especially for flow cytometry studies in peripheral blood. This would allow diminishing the number of animals needed for the experimental procedures. In addition, the use of serial extractions in the same animals drastically decreases the number of animals needed.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre/citología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Células Cultivadas , Femenino , Citometría de Flujo/métodos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Masculino , Ratones , Factores Sexuales , Células Madre/fisiología
10.
Neurodegener Dis ; 17(1): 1-13, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27544379

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) causes loss of upper and lower motor neurons as well as skeletal muscle (SKM) dysfunction and atrophy. SKM is one of the tissues involved in the development of ALS pathology, and studies in a SOD1-G93A mouse model of ALS have demonstrated alterations in SKM degeneration/regeneration marker expression in vivo and defective mutant myoblast proliferation in vitro. Granulocyte colony-stimulating factor (G-CSF) has been shown to alleviate SOD1-G93A pathology. However, it is unknown whether G-CSF may have a direct effect on SKM or derived myoblasts. OBJECTIVE: To investigate effects of G-CSF and its analog pegfilgrastim (PEGF) on SOD1-G93A- associated SKM markers in vivo and those of G-CSF on myoblast proliferation in vitro. METHODS: The effect of PEGF treatment on hematopoietic stem cell mobilization, survival, and motor function was determined. RNA expression of SKM markers associated with mutant SOD1 expression was quantified in response to PEGF treatment in vivo, and the effect of G-CSF on the proliferation of myoblasts derived from mutant and control muscles was determined in vitro. RESULTS: Positive effects of PEGF on hematopoietic stem cell mobilization, survival, and functional assays in SOD1-G93A animals were confirmed. In vivo PEGF treatment augmented the expression of its receptor Csf3r and alleviated typical markers for mutant SOD1 muscle. Additionally, G-CSF was found to directly increase the proliferation of SOD1-G93A, but not wild-type primary myoblasts in vitro. CONCLUSION: Our results support the beneficial role of the G-CSF analog PEGF in a SOD1-G93A model of ALS. Thus, G-CSF and its analogs may be directly beneficial in diseases where the SKM function is compromised.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/farmacología , Músculo Esquelético/efectos de los fármacos , Fármacos Neuromusculares/farmacología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proliferación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Filgrastim , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , Polietilenglicoles , Proteínas Recombinantes/farmacología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
11.
J Dairy Res ; 84(3): 289-292, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28831973

RESUMEN

The aim of this Regional Research Communication was to validate a panel of 30 microsatellite markers recommended by FAO/ISAG for studies of biodiversity in cattle to improve the characterisation of Cuban buffalo populations. The water buffalo (Bubalus bubalis) is an economically important livestock species. Therefore, research focused on the study of the genetic relationships among water buffalo populations is useful to support conservation decisions and to design breeding schemes. Twenty-eight of the 30 tested regions were amplified, one of which (ETH10) turned out to be monomorphic. A total of 143 alleles were observed in the Cuban water buffalo population. The average number of alleles per locus was 5·04. The number of alleles per polymorphic locus ranged from two (INRA 63 and MM12) to nine (ETH185). The observed and expected heterozygosity ranged from 0·108 (HAUT24) to 0·851 (CSSM66) and 0·104 (MM12) to 0·829(INRA32), respectively. The polymorphic information content (PIC) ranged from 0·097 (MM12) to 0·806 (INRA32), and the overall value for these markers was 0·482. Within the population, inbreeding estimates (F IS) was positive in 14 of the 30 loci analysed. This study thus highlights the usefulness of heterologous bovine microsatellite markers to assess the genetic variability in Cuban water buffalo breeds. Furthermore, the results can be utilised for future breeding strategies and conservation.


Asunto(s)
Cruzamiento/métodos , Búfalos/genética , Repeticiones de Microsatélite/genética , Alelos , Animales , Conservación de los Recursos Naturales , Cuba , ADN/análisis , Variación Genética/genética , Polimorfismo Genético/genética
12.
Am J Physiol Cell Physiol ; 311(6): C910-C919, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681176

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a difficult diagnosis and prognosis. In this regard, new and more reliable biomarkers for the disease are needed. We propose peripheral blood, and, more specifically, the hematopoietic stem and progenitor cells (HSPCs) as potential prognostic biomarkers in the SOD1G93A murine model of ALS. We accurately and serially studied three HSPCs-hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs)-in both control and SOD1G93A mice along the disease's progression by RT-PCR and flow cytometry analysis. We found interesting differences for every HSPC type in the transgenic mice compared with the control mice at every time point selected, as well as differences along the disease course. The results showed a maintained compensatory increase of HSCs along disease progression. However, the downregulated levels of CLPs and CMPs suggested an exit of these cell populations to the peripheral tissues, probably due to their supporting role to the damaged tissues. In addition, a positive correlation of the percentage of CLPs and CMPs with the longevity was found, as well as a positive correlation of HSCs and CMPs with motor function and weight, thus reinforcing the idea that HSPCs play a relevant role in the longevity of the SOD1G93A mice. On the basis of these results, both CLPs and CMPs could be considered prognostic biomarkers of longevity in this animal model, opening the door to future studies in human patients for their potential clinical use.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Biomarcadores/metabolismo , Células Madre Hematopoyéticas/metabolismo , Longevidad/fisiología , Células Madre/metabolismo , Animales , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/patología , Ratones , Ratones Transgénicos/metabolismo , Pronóstico , Células Madre/patología
13.
J Gen Virol ; 96(12): 3715-3726, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26431976

RESUMEN

Mesenchymal stem cells (MSCs) can be infected with prions and have been proposed as in vitro cell-based models for prion replication. In addition, autologous MSCs are of interest for cell therapy in neurodegenerative diseases. To the best of our knowledge, the effect of prion diseases on the characteristics of these cells has never been investigated. Here, we analysed the properties of MSCs obtained from bone marrow (BM-MSCs) and peripheral blood (PB-MSCs) of sheep naturally infected with scrapie ­ a large mammal model for the study of prion diseases. After three passages of expansion, MSCs derived from scrapie animals displayed similar adipogenic, chondrogenic and osteogenic differentiation ability as cells from healthy controls, although a subtle decrease in the proliferation potential was observed. Exceptionally, mesenchymal markers such as CD29 were significantly upregulated at the transcript level compared with controls. Scrapie MSCs were able to transdifferentiate into neuron-like cells, but displayed lower levels of neurogenic markers at basal conditions, which could limit this potential .The expression levels of cellular prion protein (PrPC) were highly variable between cultures, and no significant differences were observed between control and scrapie-derived MSCs. However, during neurogenic differentiation the expression of PrPC was upregulated in MSCs. This characteristic could be useful for developing in vitro models for prion replication. Despite the infectivity reported for MSCs obtained from scrapie-infected mice and Creutzfeldt­Jakob disease patients, protein misfolding cyclic amplification did not detect PrPSc in BM- or PB-MSCs from scrapie-infected sheep, which limits their use for in vivo diagnosis for scrapie.


Asunto(s)
Células Madre Mesenquimatosas/fisiología , Scrapie/patología , Animales , Diferenciación Celular , Extensiones de la Superficie Celular/genética , Extensiones de la Superficie Celular/metabolismo , Regulación de la Expresión Génica , Ovinos
14.
Genet Sel Evol ; 47: 86, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26542127

RESUMEN

BACKGROUND: Portugal and Spain, with six and 22 officially recognized caprine breeds, encompass 25 % of the European Union goat census. Many of these populations have suffered strong demographic declines because of competition with exotic breeds and the phasing-out of low income rural activities. In this study, we have investigated the consequences of these and other demographic processes on the genetic diversity, population structure and inbreeding levels of Iberian and Atlantic goats. METHODS: A sample of 975 individuals representing 25 officially recognized breeds from Portugal and Spain, two small populations not officially recognized (Formentera and Ajuí goats) and two ecotypes of the Tinerfeña and Blanca Celtibérica breeds were genotyped with a panel of 20 microsatellite markers. A wide array of population genetics methods was applied to make inferences about the genetic relationships and demography of these caprine populations. RESULTS: Genetic differentiation among Portuguese and Spanish breeds was weak but significant (FST = 0.07; P < 0.001), which is probably the consequence of their short splitting times and extensive gene flow due to transhumance. In contrast, Canarian goats were strongly differentiated because of prolonged geographic isolation. Most populations displayed considerable levels of diversity (mean He = 0.65). CONCLUSIONS: High diversity levels and weak population structures are distinctive features of Portuguese and Spanish breeds. In general, these local breeds have a reduced census, but are still important reservoirs of genetic diversity. These findings reinforce the need for the implementation of management and breeding programs based on genetic data in order to minimize inbreeding, maintain overall genetic and allelic diversities and breed identities, while at the same time taking into account the within-breed genetic structure.


Asunto(s)
Biodiversidad , Cabras , Alelos , Animales , Cruzamiento , Análisis por Conglomerados , Europa (Continente) , Variación Genética , Genética de Población , Genotipo , Cabras/genética , Repeticiones de Microsatélite , Portugal , España
15.
Biomolecules ; 14(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540795

RESUMEN

Amyotrophic lateral sclerosis (ALS) that comprises sporadic (sALS) and familial (fALS) cases, is a devastating neurodegenerative disorder characterized by progressive degeneration of motor neurons, leading to muscle atrophy and various clinical manifestations. However, the complex underlying mechanisms affecting this disease are not yet known. On the other hand, there is also no good prognosis of the disease due to the lack of biomarkers and therapeutic targets. Therefore, in this study, by means of bioinformatics analysis, sALS-affected muscle tissue was analyzed using the GEO GSE41414 dataset, identifying 397 differentially expressed genes (DEGs). Functional analysis revealed 320 up-regulated DEGs associated with muscle development and 77 down-regulated DEGs linked to energy metabolism. Protein-protein interaction network analysis identified 20 hub genes, including EIF4A1, HNRNPR and NDUFA4. Furthermore, miRNA target gene networks revealed 17 miRNAs linked to hub genes, with hsa-mir-206, hsa-mir-133b and hsa-mir-100-5p having been previously implicated in ALS. This study presents new potential biomarkers and therapeutic targets for ALS by correlating the information obtained with a comprehensive literature review, providing new potential targets to study their role in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , MicroARNs , Humanos , Transcriptoma/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Biomarcadores
16.
Animals (Basel) ; 14(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38254420

RESUMEN

Epilepsy is one of the most prevalent complex neurological diseases in both the canine and human species, with the idiopathic form as its most common diagnosis. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play a role in gene regulation processes and appear to be a promising biological target for convulsion control. These molecules have been reported as constituents of the internal content of exosomes, which are small extracellular vesicles released by cells. In this study, exosome samples were isolated from the plasma of 23 dogs, including 9 dogs with epilepsy responsive to treatment, 6 dogs with drug-resistant epilepsy, and 8 control dogs. Plasma exosomes were then characterized by electron transmission microscopy, nanoparticle tracking analysis, and dot blotting. Afterwards, the microRNA-enriched RNA content of exosomes was isolated, and miRNA quantification was performed by quantitative real-time PCR. Seven circulating miRNAs that have been previously described in the literature as potential diagnostic or prognostic biomarkers for epilepsy were evaluated. We observed significant differences in miR-16 (p < 0.001), miR-93-5p (p < 0.001), miR-142 (p < 0.001), miR-574 (p < 0.01), and miR-27 (p < 0.05) levels in dogs with refractory epilepsy compared to the control group. In drug-sensitive epileptic dogs, miR-142 (p < 0.01) showed significant differences compared to healthy dogs. Moreover, distinct levels of miR-16 (p < 0.05), miR-93-5p (p < 0.01), miR-132 (p < 0.05), and miR-574 (p < 0.05) were also found between drug-sensitive and drug-resistant epileptic dogs. Our results present plasma-circulating exosomes as an advantageous source of epileptic biomarkers, highlighting the potential of miRNAs as prognostic and diagnostic biomarkers of canine idiopathic epilepsy.

17.
Genet Sel Evol ; 45: 35, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-24079454

RESUMEN

BACKGROUND: Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions. METHODS: A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAO-recommended microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity. RESULTS: Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion. However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as Guabalá, Romosinuano, Cr. Patagonico, Siboney and Caracú, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher priority for conservation than the European groups of breeds. CONCLUSIONS: Conservation priorities differed significantly according to the weight given to within- and between-breed genetic diversity. Thus, when establishing conservation programs, it is necessary to also take into account other features. Creole cattle and local isolated breeds retain a high level of genetic diversity. The development of sustainable breeding and crossbreeding programs for Creole breeds, and the added value resulting from their products should be taken into consideration to ensure their long-term survival.


Asunto(s)
Bovinos/genética , Cromosomas de los Mamíferos , Variación Genética , Repeticiones de Microsatélite , Animales , Cruzamiento , Evolución Molecular , Marcadores Genéticos , Genotipo , Filogenia
18.
Neurodegener Dis ; 11(3): 153-64, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22797053

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neurodegenerative disease characterized by ascending muscle weakness, atrophy and paralysis. Early muscle abnormalities that precede motor neuron loss in ALS may destabilize neuromuscular junctions, and we have previously demonstrated alterations in myogenic regulatory factor (MRF) expression in vivo and in the activation of myofiber-associated skeletal muscle satellite cells (SMSCs) in the mouse model of ALS (SOD1-G93A). METHODS: To elucidate niche dependence versus cell-autonomous mutant SOD1 (mSOD1) toxicity in this model, we measured in vitro proliferation potential and MRF and cyclin gene expression in SMSC cultures derived from fast-twitch extensor digitorum longus and slow-twitch soleus muscles of SOD1-G93A mice. RESULTS: SMSCs from early presymptomatic (p40) to terminal, semi-paralytic (p120) SOD1-G93A mice demonstrated generally lower proliferation potential compared with age-matched controls. However, induced proliferation was observed in surgically denervated wild-type animals and SOD1-G93A animals at p90, when critical denervation arises. SMSCs from fast and slow muscles were similarly affected by mSOD1 expression. Lowered proliferation rate was generally corroborated with decreased relative MRF expression levels, although this was most prominent in early age and was modulated by muscle type origin. Cyclins controlling cell proliferation did not show modifications in their mRNA levels; however, the expression of cyclin-dependent kinase inhibitor 1A (Cdkn1a), which is known to promote myoblast differentiation, was decreased in SOD1-G93A cultures. CONCLUSIONS: Our data suggest that the function of SMSCs is impaired in SOD1-G93A satellite cells from the earliest stages of the disease when no critical motor neuron loss has been described.


Asunto(s)
Proliferación Celular , Células Satélite del Músculo Esquelético/enzimología , Células Satélite del Músculo Esquelético/patología , Superóxido Dismutasa/fisiología , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Transgénicos
19.
Animals (Basel) ; 13(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36978584

RESUMEN

In neurodegenerative diseases, including prion diseases, cellular in vitro models appear as fundamental tools for the study of pathogenic mechanisms and potential therapeutic compounds. Two-dimensional (2D) monolayer cell culture systems are the most used cell-based assays, but these platforms are not able to reproduce the microenvironment of in vivo cells. This limitation can be surpassed using three-dimensional (3D) culture systems such as spheroids that more effectively mimic in vivo cell interactions. Herein, we evaluated the effect of scrapie prion infection in monolayer-cultured ovine bone marrow-derived mesenchymal stem cells (oBM-MSCs) and oBM-MSC-derived spheroids in growth and neurogenic conditions, analyzing their cell viability and their ability to maintain prion infection. An MTT assay was performed in oBM-MSCs and spheroids subjected to three conditions: inoculated with brain homogenate from scrapie-infected sheep, inoculated with brain homogenate from healthy sheep, and non-inoculated controls. The 3D conditions improved the cell viability in most cases, although in scrapie-infected spheroids in growth conditions, a decrease in cell viability was observed. The levels of pathological prion protein (PrPSc) in scrapie-infected oBM-MSCs and spheroids were measured by ELISA. In neurogenic conditions, monolayer cells and spheroids maintained the levels of PrPSc over time. In growth conditions, however, oBM-MSCs showed decreasing levels of PrPSc throughout time, whereas spheroids were able to maintain stable PrPSc levels. The presence of PrPSc in spheroids was also confirmed by immunocytochemistry. Altogether, these results show that a 3D culture microenvironment improves the permissiveness of oBM-MSCs to scrapie infection in growth conditions and maintains the infection ability in neurogenic conditions, making this model of potential use for prion studies.

20.
BMC Vet Res ; 8: 142, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22913590

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. RESULTS: At the conclusion of culture, fewer BM-MSCs were obtained in hypoxia than in normoxia as a result of significantly reduced cell division. Hypoxic AT-MSCs proliferated less than normoxic AT-MSCs because of a significantly higher presence of non-viable cells during culture. Flow cytometry analysis revealed that the immunophenotype of both MSCs was maintained in both oxygen conditions. Gene expression analysis using RT-qPCR showed that statistically significant differences were only found for CD49d in BM-MSCs and CD44 in AT-MSCs. Similar gene expression patterns were observed at both 5% and 20% O2 for the remaining surface markers. Equine MSCs expressed the embryonic markers NANOG, OCT4 and SOX2 in both oxygen conditions. Additionally, hypoxic cells tended to display higher expression, which might indicate that hypoxia retains equine MSCs in an undifferentiated state. CONCLUSIONS: Hypoxia attenuates the proliferative capacity of equine MSCs, but does not affect the phenotype and seems to keep them more undifferentiated than normoxic MSCs.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Oxígeno/farmacología , Animales , Biomarcadores , Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Técnicas de Cultivo de Célula , División Celular/efectos de los fármacos , Proliferación Celular , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA