Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37499659

RESUMEN

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Asunto(s)
Tecnología de Genética Dirigida , Oryza , Hibridación Genética , Oryza/genética , Fitomejoramiento/métodos , Aislamiento Reproductivo , Infertilidad Vegetal
2.
Genome Res ; 34(2): 286-299, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38479835

RESUMEN

Genetic diversity is critical to crop breeding and improvement, and dissection of the genomic variation underlying agronomic traits can both assist breeding and give insight into basic biological mechanisms. Although recent genome analyses in plants reveal many structural variants (SVs), most current studies of crop genetic variation are dominated by single-nucleotide polymorphisms (SNPs). The extent of the impact of SVs on global trait variation, as well as their utility in genome-wide selection, is not yet understood. In this study, we built an SV data set based on whole-genome resequencing of diverse sorghum lines (n = 363), validated the correlation of photoperiod sensitivity and variety type, and identified SV hotspots underlying the divergent evolution of cellulosic and sweet sorghum. In addition, we showed the complementary contribution of SVs for heritability of traits related to sorghum adaptation. Importantly, inclusion of SV polymorphisms in association studies revealed genotype-phenotype associations not observed with SNPs alone. Three-way genome-wide association studies (GWAS) based on whole-genome SNP, SV, and integrated SNP + SV data sets showed substantial associations between SVs and sorghum traits. The addition of SVs to GWAS substantially increased heritability estimates for some traits, indicating their important contribution to functional allelic variation at the genome level. Our discovery of the widespread impacts of SVs on heritable gene expression variation could render a plausible mechanism for their disproportionate impact on phenotypic variation. This study expands our knowledge of SVs and emphasizes the extensive impacts of SVs on sorghum.


Asunto(s)
Variación Genética , Sorghum , Sorghum/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fenotipo , Grano Comestible/genética , Polimorfismo de Nucleótido Simple
3.
Small ; 20(27): e2310928, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308134

RESUMEN

Aerobically autoxidized self-charging concept has drawn significant attraction due to its promising chemical charge features without external power supply. Particularly, heteroatom-doped carbon materials with abundant oxidizable sites and good conductivity are expected to be ideal cathode materials. However, there is no well-defined aerobically autoxidized self-charging concept based on heteroatom-doped carbon materials, significantly hindering the design of related carbon cathodes. An aerobically autoxidized self-chargeable concept derived from synergistic effect of pyrrolic nitrogen and catechol configuration in carbon cathode using model single pyrrolic nitrogen and oxygen (N-5, O) co-doped carbon and O-enriched carbon is proposed. First, self-charging of N-5, O co-doped carbon cathode can be achieved by aerobic oxidation of pyrrolic nitrogen and catechol to oxidized pyrrolic nitrogen and ortho-quinone configurations, respectively. Second, introducing a single pyrrolic nitrogen configuration enhanced acidic wettability of N-5, O co-doped carbon facilitating air self-charge/galvanic discharge involving proton removal/introduction. Third, synergistic effect of pyrrolic nitrogen and hydroxyl species with the strong electron-donating ability to conjugated carbon-based backbone endows N-5, O co-doped carbon with a higher highest occupied molecular orbital (HOMO) energy level more susceptible to oxidation charging. The assembled Cu/Carbon batteries can drive a timer after every air-charging run. This promising aerobically autoxidized self-charging concept can inspire exploring high-efficiency self-charging devices.

4.
Yi Chuan ; 46(4): 266-278, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632090

RESUMEN

RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes, which plays vital roles in plant development and response to biotic and abiotic stresses. The discovery of trans-kingdom RNAi and interspecies RNAi provides a theoretical basis for exploiting RNAi-based crop protection strategies. Here, we summarize the canonical RNAi mechanisms in plants and review representative studies associated with plant-pathogen interactions. Meanwhile, we also elaborate upon the principles of host-induced gene silencing, spray-induced gene silencing and microbe-induced gene silencing, and discuss their applications in crop protection, thereby providing help to establish novel RNAi-based crop protection strategies.


Asunto(s)
Protección de Cultivos , Plantas , Interferencia de ARN , Plantas/genética , Eucariontes/genética , ARN Interferente Pequeño/genética
5.
Cancer Cell Int ; 22(1): 385, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476503

RESUMEN

OBJECTIVE: N6-methyladenosine (m6A) RNA methylation is involved in governing the mechanism of tumor progression. We aimed to excavate the biological role and mechanism of the m6A methyltransferase METTL3 in cholangiocarcinoma (CCA). METHODS: METTL3 expression was determined by database and tissue microarray analyses. The role of METTL3 in CCA was explored by loss- and gain-of-function experiments. The m6A target of METTL3 was detected by RNA sequencing. The role of AKR1B10 in CCA was explored, and the association between METTL3 and AKR1B10 was confirmed by rescue experiments. RESULT: METTL3 expression was upregulated in CCA tissue, and higher METTL3 expression was implicated in poor prognoses in CCA patients. Overexpression of METTL3 facilitated proliferation, migration, invasion, glucose uptake, and lactate production in CCA cells, whereas knockdown of METTL3 had the opposite effects. We further found that METTL3 deficiency inhibited CCA tumor growth in vivo. RNA sequencing and MeRIP-qPCR confirmed that METTL3 enhanced AKR1B10 expression and m6A modification levels. Furthermore, METTL3 directly binds with AKR1B10 at an m6A modification site. A CCA tissue microarray showed that AKR1B10 expression was upregulated in CCA tissue and that silencing AKR1B10 suppressed the malignant phenotype mentioned above in CCA. Notably, knockdown of AKR1B10 rescued the tumor-promoting effects induced by METTL3 overexpression. CONCLUSION: Elevated METTL3 expression promotes tumor growth and glycolysis in CCA through m6A modification of AKR1B10, indicating that METTL3 is a potential target for blocking glycolysis for application in CCA therapy.

6.
J Gene Med ; 23(5): e3324, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33615614

RESUMEN

BACKGROUND: The present study aimed to explore the etiological relationship between fetal abnormalities and copy number variations (CNVs) with the aim of intervening and preventing the birth of children with birth defects in time. METHODS: Samples of 913 fetuses with puncture indications were collected from January 2017 to December 2019. Karyotype analysis and CNV sequencing (CNV-seq) testing was performed for fetuses with ultrasonic abnormalities, a high risk of Down's syndrome and an adverse birth history. All cases were followed up. RESULTS: In total, 123 cases (13.47%) had abnormal karyotypes, including 109 cases with chromosome number abnormalities and 14 cases of chromosomal structural abnormalities. Thirty-seven (4.05%) cases with pathogenic CNVs were detected. The detection rate of pathogenicity CNVs was 12.82% for mixed indications, followed by 7.5% for an adverse birth history, 5.88% at high risk of non-invasive prenatal testing, 5.00% with an abnormal ultrasonic marker, 1.89% at high risk of screening for Down's syndrome and 1.45% with advanced maternal age. There were 12 (1.31%) cases with microduplications and 25 (2.74%) cases with microdeletions. Trisomy 21 (39.02%), trisomy 18 (13.82%) and Turner syndrome (9.76%) were the top three chromosome abnormalities. There were 104, 746 and 63 cases in the 11-13 weeks, 14-27 weeks 28-38 weeks gestational ages, respectively. The abnormal rates of fetal chromosome aneuploidy and the rate of pathogenic CNVs were decreased and increased with the increase of gestational age (p < 0.05), respectively. CONCLUSIONS: Compared with karyotype analysis, CNV-seq can improve the detection rate of chromosomal abnormalities. CNV-seq combined karyotype analysis should be performed simultaneously in fetuses with puncture indications.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Síndrome de Down/diagnóstico , Feto/patología , Diagnóstico Prenatal , Aneuploidia , Aberraciones Cromosómicas , Síndrome de Down/genética , Síndrome de Down/patología , Femenino , Feto/ultraestructura , Humanos , Cariotipificación , Embarazo
7.
Lipids Health Dis ; 20(1): 97, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465364

RESUMEN

BACKGROUND: Pancreaticobiliary reflux (PBR) causes chronic inflammation of the gallbladder mucosa and changes in the bile components, which are known to promote gallstone formation. This study aimed to investigate the bile biochemistry changes in gallstone patients with PBR and provide new clues for research on the involvement of PBR in gallstone formation. METHODS: Patients undergoing surgery for gallstones between December 2020 and May 2021 were eligible for inclusion. The bile biochemistry (including amylase, lipase, triglyceride, cholesterol, free fatty acids [FFAs], alanine aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [ALP], and γ-glutamyl transferase [γ-GT]) of the included gallstone patients was analysed to determine correlations with PBR. RESULTS: In this study, 144 gallstone patients who underwent surgery were enrolled. Overall, 15.97 % of the patients had an increased bile amylase level, which was associated with older age and significantly higher bile levels of ALP, lipase, triglyceride, and FFAs. Positive correlations were observed between amylase and lipase, triglyceride, FFAs levels in the gallbladder bile. However, the bile levels of triglyceride, FFAs, and lipase were positively correlated with each other only in the PBR group and showed no significant correlation in the control (N) group. In addition, elevated bile FFAs levels were found to be an independent risk factor for gallbladder wall thickening. CONCLUSIONS: In conclusion, PBR-induced increase in FFAs and triglyceride in the gallbladder bile is a cause of gallstone formation, and an increase in bile ALP suggests the presence of cholestasis in PBR.


Asunto(s)
Reflujo Biliar/metabolismo , Bilis/química , Ácidos Grasos no Esterificados/análisis , Cálculos Biliares/metabolismo , Triglicéridos/análisis , Adulto , Anciano , Ácidos Grasos no Esterificados/metabolismo , Femenino , Vesícula Biliar/metabolismo , Cálculos Biliares/química , Humanos , Masculino , Persona de Mediana Edad , Mortalidad , Estudios Prospectivos , Triglicéridos/metabolismo
8.
J Clin Lab Anal ; 34(8): e23347, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32342531

RESUMEN

OBJECTIVE: Copy number variation sequencing (CNV-seq) technique was used to analyze the genetic etiology of fetuses with increased nuchal translucency (NT). METHODS: A total of 139 women with gestational 11-14 weeks whose fetuses were detected with increased NT (NT ≥ 2.5 mm) in our hospital from July 2016 to December 2018 were selected. Fetal specimens were performed for karyotyping analysis and CNV sequencing. RESULTS: According to the nuchal translucency thickness, 2.5-3.4, 3.5-4.4, 4.5-5.4, and more than 5.5 mm, the rates of chromosomal abnormalities were 22.8% (13/57), 30.8% (12/39), 42.1% (8/19), and 62.5% (15/24), respectively. There was significant difference among the incidences of chromosomal abnormalities in four groups (χ2  = 37.69, P < .01) and the incidences increased with fetal NT thickness. Among 139 cases, there were 36 cases (25.9%) with abnormal chromosome karyotypes. Meanwhile, there were 45 cases (32.3%) with abnormal CNV. In the 12 cases with abnormal CNV and normal chromosome karyotypes, there were 2 cases of pathogenic CNV, 7 cases of CNV with unknown clinical significance, and 3 cases of possibly benign CNV. There was no significant difference in CNV between pregnant women in advanced maternal age and those in normal maternal age (χ2  = 1.389, P = .239). In the fetus who showed abnormalities in NT and ultrasonography (χ2  = 5.13, P < .05) and the fetus aborted (χ2  = 113.19, P < .05), the abnormal rate of CNV was higher with statistically significant difference. CONCLUSION: CNV-seq combined karyotype analysis should be performed simultaneously in fetuses with increased NT, providing a basis for genetic counseling, which is of great significance for prenatal diagnosis.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Feto , Medida de Translucencia Nucal , Diagnóstico Prenatal , Adulto , Femenino , Feto/diagnóstico por imagen , Feto/patología , Humanos , Cariotipificación , Embarazo , Análisis de Secuencia de ADN , Ultrasonografía Prenatal
9.
aBIOTECH ; 5(1): 114, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38576432

RESUMEN

[This corrects the article DOI: 10.1007/s42994-023-00124-6.].

10.
aBIOTECH ; 5(1): 17-28, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38576436

RESUMEN

Small RNA (sRNA)-mediated RNA silencing (also known as RNA interference, or RNAi) is a conserved mechanism in eukaryotes that includes RNA degradation, DNA methylation, heterochromatin formation and protein translation repression. In plants, sRNAs can move either cell-to-cell or systemically, thereby acting as mobile silencing signals to trigger noncell autonomous silencing. However, whether and what proteins are also involved in noncell autonomous silencing have not been elucidated. In this study, we utilized a previously reported inducible RNAi plant, PDSi, which can induce systemic silencing of the endogenous PDS gene, and we demonstrated that DCL3 is involved in systemic PDS silencing through its RNA binding activity. We confirmed that the C-terminus of DCL3, including the predicted RNA-binding domain, is capable of binding short RNAs. Mutations affecting RNA binding, but not processing activity, reduced systemic PDS silencing, indicating that DCL3 binding to RNAs is required for the induction of systemic silencing. Cucumber mosaic virus infection assays showed that the RNA-binding activity of DCL3 is required for antiviral RNAi in systemically noninoculated leaves. Our findings demonstrate that DCL3 acts as a signaling agent involved in noncell autonomous silencing and an antiviral effect in addition to its previously known function in the generation of 24-nucleotide sRNAs. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00124-6.

11.
Transl Oncol ; 37: 101764, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37643553

RESUMEN

INTRODUCTION: N6-methyladenosine (m6A) is an emerging epigenetic modification, which plays a crucial role in the development of cancer. Nevertheless, the underlying mechanism of m6A-associated proteins and m6A modification in gallbladder cancer remains largely unknown. MATERIALS AND METHODS: The Gene Expression Omnibus database and tissue microarray were used to identify the key m6A-related gene in gallbladder cancer. The function and mechanism of IGF2BP3 were further investigated by knockdown and overexpression techniques in vitro and in vivo. RESULTS: We found that IGF2BP3 was elevated and correlated with poor prognosis in gallbladder cancer, which can be used as an independent prognostic factor for gallbladder cancer. IGF2BP3 accelerated the proliferation, invasion and migration of gallbladder cancer cells in vitro and in vivo. Mechanistically, IGF2BP3 interacted with and augmented the stability of CLDN4 mRNA by m6A modification. Enhancement of CLDN4 reversed the inhibitory effect of IGF2BP3 deficiency on gallbladder cancer. Furthermore, we demonstrated that IGF2BP3 promotes the activation of NF-κB signaling pathway by up-regulation of CLDN4. Overexpression of IGF2BP3 in gallbladder cancer cells obviously promoted the polarization of immunosuppressive phenotype in macrophages. Besides, Gallbladder cancer cells-derived IGF2BP3 up-regulated the levels of STAT3 in M2 macrophages, and promoted M2 polarization. CONCLUSIONS: We manifested IGF2BP3 promotes the aggressive phenotype of gallbladder cancer by stabilizing CLDN4 mRNA in an m6A-dependent manner and induces macrophage immunosuppressive polarization, which might offer a new theoretical basis for against gallbladder cancer.

12.
J Fungi (Basel) ; 9(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108938

RESUMEN

For successful colonization, fungal pathogens have evolved specialized infection structures to overcome the barriers present in host plants. The morphology of infection structures and pathogenic mechanisms are diverse according to host specificity. Verticillium dahliae, a soil-borne phytopathogenic fungus, generates hyphopodium with a penetration peg on cotton roots while developing appressoria, that are typically associated with leaf infection on lettuce and fiber flax roots. In this study, we isolated the pathogenic fungus, V. dahliae (VdaSm), from Verticillium wilt eggplants and generated a GFP-labeled isolate to explore the colonization process of VdaSm on eggplants. We found that the formation of hyphopodium with penetration peg is crucial for the initial colonization of VdaSm on eggplant roots, indicating that the colonization processes on eggplant and cotton share a similar feature. Furthermore, we demonstrated that the VdNoxB/VdPls1-dependent Ca2+ elevation activating VdCrz1 signaling is a common genetic pathway to regulate infection-related development in V. dahliae. Our results indicated that VdNoxB/VdPls1-dependent pathway may be a desirable target to develop effective fungicides, to protect crops from V. dahliae infection by interrupting the formation of specialized infection structures.

13.
Nat Plants ; 9(9): 1409-1418, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653339

RESUMEN

Small RNA (sRNA)-mediated trans-kingdom RNA interference (RNAi) between host and pathogen has been demonstrated and utilized. However, interspecies RNAi in rhizospheric microorganisms remains elusive. In this study, we developed a microbe-induced gene silencing (MIGS) technology by using a rhizospheric beneficial fungus, Trichoderma harzianum, to exploit an RNAi engineering microbe and two soil-borne pathogenic fungi, Verticillium dahliae and Fusarium oxysporum, as RNAi recipients. We first detected the feasibility of MIGS in inducing GFP silencing in V. dahliae. Then by targeting a fungal essential gene, we further demonstrated the effectiveness of MIGS in inhibiting fungal growth and protecting dicotyledon cotton and monocotyledon rice plants against V. dahliae and F. oxysporum. We also showed steerable MIGS specificity based on a selected target sequence. Our data verify interspecies RNAi in rhizospheric fungi and the potential application of MIGS in crop protection. In addition, the in situ propagation of a rhizospheric beneficial microbe would be optimal in ensuring the stability and sustainability of sRNAs, avoiding the use of nanomaterials to carry chemically synthetic sRNAs. Our finding reveals that exploiting MIGS-based biofungicides would offer straightforward design and implementation, without the need of host genetic modification, in crop protection against phytopathogens.


Asunto(s)
Protección de Cultivos , Silenciador del Gen , Interferencia de ARN , Edición Génica , Genes Fúngicos
14.
Nat Commun ; 14(1): 4844, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563142

RESUMEN

The soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, causes vascular wilts in a wide variety of economically important crops. The molecular mechanism of V. dahliae pathogenesis remains largely elusive. Here, we identify a small ubiquitin-like modifier (SUMO)-specific protease (VdUlpB) from V. dahliae, and find that VdUlpB facilitates V. dahliae virulence by deconjugating SUMO from V. dahliae enolase (VdEno). We identify five lysine residues (K96, K254, K259, K313 and K434) that mediate VdEno SUMOylation, and SUMOylated VdEno preferentially localized in nucleus where it functions as a transcription repressor to inhibit the expression of an effector VdSCP8. Importantly, VdUlpB mediates deSUMOylation of VdEno facilitates its cytoplasmic distribution, which allows it to function as a glycolytic enzyme. Our study reveals a sophisticated pathogenic mechanism of VdUlpB-mediated enolase deSUMOylation, which fortifies glycolytic pathway for growth and contributes to V. dahliae virulence through derepressing the expression of an effector.


Asunto(s)
Ascomicetos , Verticillium , Virulencia , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Enfermedades de las Plantas/microbiología
15.
Nanomicro Lett ; 16(1): 62, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38117409

RESUMEN

HIGHLIGHTS: An air-breathing chemical self-charge concept of oxygen-enriched carbon cathode. The oxygen-enriched carbon material with abundant catechol groups. Rapid air-oxidation chemical self-charge of catechol groups. The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting, conversion and storage without an external power supply. However, most self-charging designs assembled by multiple energy harvesting, conversion and storage materials increase the energy transfer loss; the environmental energy supply is generally limited by climate and meteorological conditions, hindering the potential application of these self-powered devices to be available at all times. Based on aerobic autoxidation of catechol, which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge, we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups. Energy harvesting, conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials. Moreover, the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications. This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.

16.
J Integr Plant Biol ; 54(2): 73-86, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22221297

RESUMEN

In plants, non-coding small RNAs play a vital role in plant development and stress responses. To explore the possible role of non-coding small RNAs in the regulation of the jasmonate (JA) pathway, we compared the non-coding small RNAs between the JA-deficient aos mutant and the JA-treated wild type Arabidopsis via high-throughput sequencing. Thirty new miRNAs and 27 new miRNA candidates were identified through bioinformatics approach. Forty-nine known miRNAs (belonging to 24 families), 15 new miRNAs and new miRNA candidates (belonging to 11 families) and 3 tasiRNA families were induced by JA, whereas 1 new miRNA, 1 tasiRNA family and 22 known miRNAs (belonging to 9 families) were repressed by JA.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Ciclopentanos/farmacología , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Oxilipinas/farmacología , ARN de Planta/genética , ARN Pequeño no Traducido/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Biblioteca de Genes , Genes de Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Pequeño no Traducido/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN
17.
Front Plant Sci ; 13: 847086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35519822

RESUMEN

Bidirectional trans-kingdom RNA silencing [or RNA interference (RNAi)] plays a key role in plant-pathogen interactions. It has been shown that plant hosts export specific endogenous miRNAs into pathogens to inhibit their virulence, whereas pathogens deliver small RNAs (sRNAs) into plant cells to disturb host immunity. Here, we report a trans-kingdom fungal sRNA retarding host plant floral transition by targeting a miRNA precursor. From Arabidopsis plants infected with Verticillium dahliae, a soil-borne hemibiotrophic pathogenic fungus that causes wilt diseases in a wide range of plant hosts, we obtained a number of possible trans-kingdom V. dahliae sRNAs (VdsRNAs) by sequencing AGO1-immunoprecipitated sRNAs. Among these, a 24-nt VdsRNA derived from V. dahliae rRNA, VdrsR-1, was shown to be an actual trans-kingdom VdsRNA that targets the miR157d precursor MIR157d, resulting in increased rather than reduced miR157d accumulation in V. dahliae-infected plants. Consistent with the miR157 family in the regulation of vegetative and floral transitions by targeting SPL genes in several plant species, we detected two SPL genes, SPL13A/B, that were notably reduced in V. dahliae-infected and VdrsR-1-expressing plants compared with control plants. Furthermore, V. dahliae-infected and VdrsR-1-expressing plants also displayed delayed vegetative phase change and floral transition compared to control plants. Taken together, we disclosed a novel mode of action for a trans-kingdom fungal sRNA, VdrsR-1, which was secreted into host cells to modulate plant floral transition by employing the miR157d/SPL13A/B regulatory module, leading to prolonged host vegetative growth that would undoubtedly benefit fungal propagation.

18.
Nat Plants ; 5(11): 1167-1176, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31636399

RESUMEN

Soil-borne fungal pathogens that cause crop disease are major threats to agriculture worldwide. Here, we identified a secretory polysaccharide deacetylase (PDA1) from the soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, that facilitates virulence through direct deacetylation of chitin oligomers whose N-acetyl group contributes to host lysine motif (LysM)-containing receptor perception for ligand-triggered immunity. Polysaccharide deacetylases are widely present in fungi, bacteria, insects and marine invertebrates and have been reported to possess diverse functions in developmental processes rather than virulence. A phylogenetics analysis of more than 5,000 fungal proteins with conserved polysaccharide deacetylase domains showed that the V. dahliae PDA1-containing subtree includes a large number of proteins from the Verticillium genus as well as the Fusarium genus, another group of characterized soil-borne fungal pathogens, suggesting that soil-borne fungal pathogens have adopted chitin deacetylation as a major virulence strategy. We showed that a Fusarium PDA1 is required for virulence in cotton plants. This study reveals a substantial virulence function role of polysaccharide deacetylases in pathogenic fungi and demonstrates a subtle mechanism whereby deacetylation of chitin oligomers converts them to ligand-inactive chitosan, representing a common strategy of preventing chitin-triggered host immunity by soil-borne fungal pathogens.


Asunto(s)
Amidohidrolasas/metabolismo , Quitina/metabolismo , Gossypium/microbiología , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Verticillium/patogenicidad , Acetilación , Amidohidrolasas/genética , Fusarium/enzimología , Fusarium/patogenicidad , Gossypium/metabolismo , Solanum lycopersicum/metabolismo , Verticillium/enzimología , Virulencia
19.
J Exp Clin Cancer Res ; 38(1): 205, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101117

RESUMEN

BACKGROUND: The aim of this study is to explore the molecular mechanism of the LIM protein Ajuba and the transcription factor SP1 in the pathogenesis and progression of PDAC. Ajuba is a newly defined transcriptional co-regulator and plays important role in various cancer development, while SP1 is a classic transcription factor, and is closely related with a variety of gene expression and cancer development including PDAC. METHODS: The expression of Ajuba and SP1 in PDAC tissues was detected by immunohistochemistry (IHC), and the correlation between expression level and clinical prognosis of Ajuba and SP1 was extensively analyzed using online tools. The interaction between Ajuba and SP1 was examined by co-immunoprecipitation (co-IP) and GST-pulldown assays. Stable cell lines were established via lentiviral infection, and was examined by qRT-PCR and western blot assays. The effects of Ajuba/SP1 on PDAC cell proliferation were examined using CCK8 and colony formation assays. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were employed to examine the transcription activity. RESULTS: The expression level (protein and mRNA) of Ajuba and SP1 was elevated in PDAC tissues and was positively correlated; patients with high Ajuba and SP1 expression had a poor prognosis. Mechanistically, Ajuba binds to the C-terminus of SP1 and functions as a co-activator to enhance SP1 gene expression and promote cell proliferation; the promoter of Ajuba contains functional SP1 responsive elements and Ajuba itself is a target gene of SP1. CONCLUSION: Ajuba functions as a co-activator of SP1 to induce its target gene, and that Ajuba itself is a target genes of SP1. Ajuba/SP1 complex could form a feed forward loop to drive SP1 target gene transcription and promote cell proliferation of pancreatic cancer cells. Ajuba and SP1 might be biomarkers for PDAC diagnostics, prognosis and targets for new therapeutics.


Asunto(s)
Proliferación Celular/genética , Proteínas con Dominio LIM/genética , Neoplasias Pancreáticas/genética , Factor de Transcripción Sp1/genética , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Complejos Multiproteicos/genética , Neoplasias Pancreáticas/patología , Regiones Promotoras Genéticas , Unión Proteica/genética , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA