RESUMEN
To study the effect of serum containing Xihuang pill on the proliferation of human breast cancer cell lines MDA-MB-435 and MCF-7 and the gene and protein expressions of Bcl-2, Bax, TP53, in order to explore the effect and mechanism of Xihuang pill in resisting breast cancer. The serum of the rats was prepared by the method of MTT assay. The expressions of Bcl-2 and Bax were detected by RT-PCR. The serum levels of Bcl-2 and Bax and the mRNA expression of TP53 were detected by immunofluorescence. The rats with serum containing Xihuang pill could inhibit the proliferation of MDA-MB-435 cells and MCF-7 cells (P<0.05). The serum containing Xihuang pill increased TP53 and Bax in MDA-MB-435 cells (P<0.05), and the ratio of Bcl-2/Bax was decreased (P<0.05). Meanwhile, the serum containing Xihuang pill could up-regulate the mRNA expression of Bax in MCF-7 cells and decrease the expression of Bcl (P<0.05), but there was no significant difference between the expression of TP53mRNA and Bax protein expressions after the treatment of MCF-7 cells with Xihuang pill serum. Serum containing Xihuang pill can induce the apoptosis of human breast cancer cells, and the mechanism of estrogen receptor-negative breast cancer cell apoptosis may be induced by up-regulating the mRNA expression of TP53, which can induce the expression of Bax and promote the metastasis of Bax to mitochondria, and ultimately play the role of inducing apoptosis.
Asunto(s)
Apoptosis , Neoplasias de la Mama , Animales , Proliferación Celular , Medicamentos Herbarios Chinos , Humanos , Células MCF-7 , Ratas , Proteína X Asociada a bcl-2RESUMEN
Since Ln-CPs have excellent optical properties (higher color purity, longer fluorescence lifetime and higher quantum yield) and magnetic properties, it is of great significance to prepare dual magneto-optical materials based on Ln(iii). Herein, we obtained three versatile Ln-CPs, [Ln(HDTTA)3(CH3OH)3] n , derived from reactions of lanthanide salts (Ln = Tb 1, Dy 2, Ho 3) and a chiral and flexible ligand, namely, (+)-di-p-toluoyl-d-tartaric acid (d-H2DTTA) in a methanol-water solution, at room temperature and pressure. The structures of these compounds have been characterized by single crystal and powder X-ray diffraction, infrared spectroscopy, elemental analyses and thermogravimetric analyses. Complexes 1-3 are isomorphic, crystallizing in the chiral trigonal R3 space group with the linkage of Ln3+ ions and featuring 1D propeller chain structures. The circular dichroism spectra confirm that the complexes maintain the chirality from the ligands. Furthermore, the luminescent and magnetic properties have been investigated, relying on intrinsic properties of the lanthanide ions. The photoluminescence measurements indicate that 1, 2 and 3 show strong green, white and blue emission bands with CIE chromaticity coordinates of (0.32, 0.56), (0.29, 0.26) and (0.21, 0.12), respectively. The decay lifetime curve of 1 shows the exponential decay with long lifetime of 1.169 ms and the relative quantum yield for 1 was 19.31%. In addition, the magnetic properties of complexes 1-3 have been investigated by measuring the magnetic susceptibility in the temperature range of 2-300 K. They are all dominated by spin-orbit coupling and ligand field perturbation, and the exchange coupling between Ln3+ ions is almost negligible. Therefore, complexes 1-3 are promising chiral, optical and magnetic multifunctional materials.
RESUMEN
BACKGROUND: Arm protein lost in epithelial cancers, on chromosome X (ALEX) is a novel subgroup within the armadillo (ARM) family, which has one or two ARM repeat domains as opposed to more than six-thirteen repeats in the classical Armadillo family members. MATERIALS AND METHODS: In the study, we explore the biological functions of ALEX1 in breast cancer cells. Overexpression of ALEX1 and silencing of ALEX1 were performed with SK-BR3 and MCF-7 cell lines. Cell proliferation and colony formation assays, along with flow cytometry, were carried out to evaluate the roles of ALEX1. RESULTS: ALEX1 overexpression in SK-BR3 breast cancer cells inhibited proliferation and induced apoptosis. Furthermore, depletion of ALEX1 in MCF-7 breast cancer cells increased proliferation and inhibited apoptosis. Additional analyses demonstrated that the overexpression of ALEX1 activated the intrinsic apoptosis cascades through up-regulating the expression of Bax, cytosol cytochrome c, active caspase-9 and active caspase-3 and down-regulating the levels of Bcl-2 and mitochondria cytochrome c. Simultaneouly, silencing of ALEX1 inhibited intrinsic apoptosis cascades through down-regulating the expression of Bax, cytosol cytochrome c, active caspase-9, and active caspase-3 and up-regulating the level of Bcl-2 and mitochondria cytochrome c. CONCLUSIONS: Our data suggest that ALEX1 as a crucial tumor suppressor gene has been involved in cell proliferation and apoptosis in breast cancer, which may serve as a novel candidate therapeutic target.