Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.325
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38711371

RESUMEN

T-cell receptor (TCR) recognition of antigens is fundamental to the adaptive immune response. With the expansion of experimental techniques, a substantial database of matched TCR-antigen pairs has emerged, presenting opportunities for computational prediction models. However, accurately forecasting the binding affinities of unseen antigen-TCR pairs remains a major challenge. Here, we present convolutional-self-attention TCR (CATCR), a novel framework tailored to enhance the prediction of epitope and TCR interactions. Our approach utilizes convolutional neural networks to extract peptide features from residue contact matrices, as generated by OpenFold, and a transformer to encode segment-based coded sequences. We introduce CATCR-D, a discriminator that can assess binding by analyzing the structural and sequence features of epitopes and CDR3-ß regions. Additionally, the framework comprises CATCR-G, a generative module designed for CDR3-ß sequences, which applies the pretrained encoder to deduce epitope characteristics and a transformer decoder for predicting matching CDR3-ß sequences. CATCR-D achieved an AUROC of 0.89 on previously unseen epitope-TCR pairs and outperformed four benchmark models by a margin of 17.4%. CATCR-G has demonstrated high precision, recall and F1 scores, surpassing 95% in bidirectional encoder representations from transformers score assessments. Our results indicate that CATCR is an effective tool for predicting unseen epitope-TCR interactions. Incorporating structural insights enhances our understanding of the general rules governing TCR-epitope recognition significantly. The ability to predict TCRs for novel epitopes using structural and sequence information is promising, and broadening the repository of experimental TCR-epitope data could further improve the precision of epitope-TCR binding predictions.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Humanos , Epítopos/química , Epítopos/inmunología , Biología Computacional/métodos , Redes Neurales de la Computación , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Antígenos/química , Antígenos/inmunología , Secuencia de Aminoácidos
2.
Chem Rev ; 124(17): 10112-10191, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189449

RESUMEN

Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.

3.
Nucleic Acids Res ; 52(D1): D98-D106, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953349

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as crucial regulators across diverse biological processes and diseases. While high-throughput sequencing has enabled lncRNA discovery, functional characterization remains limited. The EVLncRNAs database is the first and exclusive repository for all experimentally validated functional lncRNAs from various species. After previous releases in 2018 and 2021, this update marks a major expansion through exhaustive manual curation of nearly 25 000 publications from 15 May 2020, to 15 May 2023. It incorporates substantial growth across all categories: a 154% increase in functional lncRNAs, 160% in associated diseases, 186% in lncRNA-disease associations, 235% in interactions, 138% in structures, 234% in circular RNAs, 235% in resistant lncRNAs and 4724% in exosomal lncRNAs. More importantly, it incorporated additional information include functional classifications, detailed interaction pathways, homologous lncRNAs, lncRNA locations, COVID-19, phase-separation and organoid-related lncRNAs. The web interface was substantially improved for browsing, visualization, and searching. ChatGPT was tested for information extraction and functional overview with its limitation noted. EVLncRNAs 3.0 represents the most extensive curated resource of experimentally validated functional lncRNAs and will serve as an indispensable platform for unravelling emerging lncRNA functions. The updated database is freely available at https://www.sdklab-biophysics-dzu.net/EVLncRNAs3/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN Largo no Codificante , Manejo de Datos , Almacenamiento y Recuperación de la Información , ARN Largo no Codificante/genética
4.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38008419

RESUMEN

Single-cell RNA sequencing (scRNA-seq) enables the resolution of cellular heterogeneity in diseases and facilitates the identification of novel cell types and subtypes. However, the grouping effects caused by cell-cell interactions are often overlooked in the development of tools for identifying subpopulations. We proposed LP_SGL which incorporates cell group structure to identify phenotype-associated subpopulations by integrating scRNA-seq, bulk expression and bulk phenotype data. Cell groups from scRNA-seq data were obtained by the Leiden algorithm, which facilitates the identification of subpopulations and improves model robustness. LP_SGL identified a higher percentage of cancer cells, T cells and tumor-associated cells than Scissor and scAB on lung adenocarcinoma diagnosis, melanoma drug response and liver cancer survival datasets, respectively. Biological analysis on three original datasets and four independent external validation sets demonstrated that the signaling genes of this cell subset can predict cancer, immunotherapy and survival.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Algoritmos , Comunicación Celular , Fenotipo , Neoplasias Pulmonares/genética
5.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38112223

RESUMEN

To investigate whether intermittent theta burst stimulation over the cerebellum induces changes in resting-state electroencephalography microstates in patients with subacute stroke and its correlation with cognitive and emotional function. Twenty-four stroke patients and 17 healthy controls were included in this study. Patients and healthy controls were assessed at baseline, including resting-state electroencephalography and neuropsychological scales. Fifteen patients received lateral cerebellar intermittent theta burst stimulation as well as routine rehabilitation training (intermittent theta burst stimulation-RRT group), whereas 9 patients received only conventional rehabilitation training (routine rehabilitation training group). After 2 wk, baseline data were recorded again in both groups. Stroke patients exhibited reduced parameters in microstate D and increased parameters in microstate C compared with healthy controls. However, after the administration of intermittent theta burst stimulation over the lateral cerebellum, significant alterations were observed in the majority of metrics for both microstates D and C. Lateral cerebellar intermittent theta burst stimulation combined with conventional rehabilitation has a stronger tendency to improve emotional and cognitive function in patients with subacute stroke than conventional rehabilitation. The improvement of mood and cognitive function was significantly associated with microstates C and D. We identified electroencephalography microstate spatiotemporal dynamics associated with clinical improvement following a course of intermittent theta burst stimulation therapy.


Asunto(s)
Electroencefalografía , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Estimulación Magnética Transcraneal , Cerebelo , Cognición
6.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295882

RESUMEN

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Asunto(s)
Asma , Hipersensibilidad , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Hipersensibilidad/genética , Asma/etiología , Genómica , Proteómica , Metabolómica
7.
BMC Bioinformatics ; 25(1): 97, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443825

RESUMEN

BACKGROUND: DNA methylation is a biochemical process in which a methyl group is added to the cytosine-phosphate-guanine (CpG) site on DNA molecules without altering the DNA sequence. Multiple CpG sites in a certain genome region can be differentially methylated across phenotypes. Identifying these differentially methylated CpG regions (DMRs) associated with the phenotypes contributes to disease prediction and precision medicine development. RESULTS: We propose a novel DMR detection algorithm, gbdmr. In contrast to existing methods under a linear regression framework, gbdmr assumes that DNA methylation levels follow a generalized beta distribution. We compare gbdmr to alternative approaches via simulations and real data analyses, including dmrff, a new DMR detection approach that shows promising performance among competitors, and the traditional EWAS that focuses on single CpG sites. Our simulations demonstrate that gbdmr is superior to the other two when the correlation between neighboring CpG sites is strong, while dmrff shows a higher power when the correlation is weak. We provide an explanation of these phenomena from a theoretical perspective. We further applied the three methods to multiple real DNA methylation datasets. One is from a birth cohort study undertaken on the Isle of Wight, United Kingdom, and the other two are from the Gene Expression Omnibus database repository. Overall, gbdmr identifies more DMR CpGs linked to phenotypes than dmrff, and the simulated results support the findings. CONCLUSIONS: Gbdmr is an innovative method for detecting DMRs based on generalized beta regression. It demonstrated notable advantages over dmrff and traditional EWAS, particularly when adjacent CpGs exhibited moderate to strong correlations. Our real data analyses and simulated findings highlight the reliability of gbdmr as a robust DMR detection tool. The gbdmr approach is accessible and implemented by R on GitHub: https://github.com/chengzhouwu/gbdmr .


Asunto(s)
Genoma Humano , Fosfatos , Humanos , Estudios de Cohortes , Reproducibilidad de los Resultados , Citosina , Guanina
8.
J Cell Mol Med ; 28(9): e18377, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686488

RESUMEN

There are few effective therapeutic strategies for temporomandibular joint osteoarthritis (TMJOA) due to the unclear pathology and mechanisms. We aimed to confirm the roles of GPX4 and ferroptosis in TMJOA progression. ELISA assay was hired to evaluate concentrations of ferroptosis-related markers. The qRT-PCR assay was hired to assess gene mRNA level. Western blot assay and immunohistochemistry were hired to verify the protein level. CCK-8 assay was hired to detect cell viability. Human fibroblast-like synoviocytes (FLSs) were cultured to confirm the effects of GPX4 and indicated inhibitors, and further verified the effects of GPX4 and ferroptosis inhibitors in TMJOA model rats. Markers of ferroptosis including 8-hidroxy-2-deoxyguanosine (8-OHdG) and iron were notably increased in TMJOA tissues and primary OA-FLSs. However, the activity of the antioxidant system including the glutathione peroxidase activity, glutathione (GSH) contents, and glutathione/oxidized glutathione (GSH/GSSG) ratio was notably inhibited in TMJOA tissues, and the primary OA-FLSs. Furthermore, the glutathione peroxidase 4 (GPX4) expression was down-regulated in TMJOA tissues and primary OA-FLSs. Animal and cell experiments have shown that ferroptosis inhibitors notably inhibited ferroptosis and promoted HLS survival as well as up-regulated GPX4 expression. Also, GPX4 knockdown promoted ferroptosis and GPX4 overexpression inhibited ferroptosis. GPX4 also positively regulated cell survival which was the opposite with ferroptosis. In conclusion, GPX4 and ferroptosis regulated the progression of TMJOA. Targeting ferroptosis might be an effective therapeutic strategy for TMJOA patients in the clinic.


Asunto(s)
Ferroptosis , Osteoartritis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Articulación Temporomandibular , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Fibroblastos/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ratas Sprague-Dawley , Sinoviocitos/metabolismo , Sinoviocitos/patología , Articulación Temporomandibular/patología , Articulación Temporomandibular/metabolismo
9.
J Hepatol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39393439

RESUMEN

BACKGROUND: The tumor microenvironment (TME) plays a crucial role in the limited efficacy of existing treatments for hepatocellular carcinoma (HCC), with tumor-associated endothelial cells (TECs) serving as fundamental TME components that substantially influence tumor progression and treatment efficacy. However, the precise roles and mechanisms of TECs in HCC remain inadequately understood. METHODS: We employed a multi-omics profiling strategy to investigate the single-cell and spatiotemporal evolution of TECs within the microenvironment of HCC tumors showcasing varied responses to immunotherapy. Through an analysis of a clinical cohort of HCC patients, we explored the correlation between TEC subpopulations and immunotherapy outcomes. The influence of TEC subsets on the immune microenvironment was confirmed through comprehensive in vitro and in vivo studies. To further explore the mechanisms of distinct TEC subpopulations in microenvironmental modulation and their impact on immunotherapy, we utilized TEC subset-specific knockout mouse models as well as humanized mouse models. RESULTS: In this research, we identified a new subset of CXCL12+ TECs that exert a crucial role in immune suppression within the HCC TME. Functionally, CXCL12+ TECs impede the differentiation of CD8+ naïve T cells into CD8+ cytotoxic T cells by secreting CXCL12. Furthermore, they attract myeloid-derived suppressor cells (MDSCs). A bispecific antibody was developed to target both CXCL12 and PD1 specifically, showing significant promise in bolstering anti-tumor immune responses and advancing HCC therapy. CONCLUSIONS: CXCL12+ TECs are pivotal in mediating immunosuppression within HCC microenvironment and targeting CXCL12+ TECs presents a promising approach to augment the efficacy of immunotherapies in HCC patients. IMPACT AND IMPLICATION: This investigation reveals a pivotal mechanism in the HCC TME, where CXCL12+ TECs emerge as crucial modulators of immune suppression. The discovery of CXCL12+ TECs as inhibitors of CD8+ naïve T cell activation and recruiters of MDSCs significantly advances our grasp of the dynamic between HCC and immune regulation. Moreover, the development and application of a bispecific antibody precisely targeting CXCL12 and PD1 has proven to enhance immune responses in a humanized mouse HCC model. This finding underscores a promising therapeutic direction for HCC, offering the potential to amplify the impact of current immunotherapies.

10.
Small ; 20(10): e2305502, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880909

RESUMEN

Biomass-based hydrogels have attracted great attention in flexible and sustainable self-powered power sources but struggled to fabricate in a green, high-efficiency, and low-cost manner. Herein, a novel and facile alkali-polyphenol synergetic self-catalysis system is originally employed for the fast gelation of self-healable and self-adhesive lignin-based conductive hydrogels, which can be regarded as hydrogel electrodes of flexible triboelectric nanogenerators (TENGs). This synergy self-catalytic system comprises aqueous alkali and polyphenol-containing lignin, in which alkali-activated ammonium persulfate (APS) significantly accelerates the generation of radicals and initiates the polymerization of monomers, while polyphenol acts as a stabilizer to avoid bursting polymerization from inherent radical scavenging ability. Furthermore, multiple hydrogen bonds between lignin biopolymers and polyacrylamide (PAM) chains impart lignin-based hydrogels with exceptional adhesiveness and self-healing properties. Intriguingly, the alkaline conditions not only contribute to the solubility of lignin but also impart superior ionic conductivity of lignin-based hydrogel that is applicable to flexible TENG in self-powered energy-saving stair light strips, which holds great promise for industrial applications of soft electronics.

11.
Metabolomics ; 20(2): 38, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460055

RESUMEN

INTRODUCTION: Changes in the categories and concentrations of salivary metabolites may be closely related to oral, intestinal or systemic diseases. To study salivary metabolites, the first analytical step is to extract them from saliva samples as much as possible, while reducing interferences to a minimum. Frequently used extraction methods are protein precipitation (PPT), liquid-liquid extraction (LLE) and solid-phase extraction (SPE), with various organic solvents. The types and quantities of metabolites extracted with different methods may vary greatly, but few studies have systematically evaluated them. OBJECTIVES: This study aimed to select the most suitable methods and solvents for the extraction of saliva according to different analytical targets. METHODS: An untargeted metabolomics approach based on liquid chromatography-mass spectrometry was applied to obtain the raw data. The numbers of metabolites, repeatability of the data and intensities of mass spectrometry signals were used as evaluation criteria. RESULTS: PPT resulted in the highest coverage. Among the PPT solvents, acetonitrile displayed the best repeatability and the highest coverage, while acetone resulted in the best signal intensities for the extracted compounds. LLE with the mixture of chloroform and methanol was the most suitable for the extraction of small hydrophobic compounds. CONCLUSION: PPT with acetonitrile or acetone was recommended for untargeted analysis, while LLE with the mixture of chloroform and methanol was recommended for small hydrophobic compounds.


Asunto(s)
Metabolómica , Metanol , Solventes/química , Metabolómica/métodos , Metanol/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Cloroformo , Acetona , Saliva , Acetonitrilos
12.
Toxicol Appl Pharmacol ; : 117125, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395609

RESUMEN

Oral small-molecule GLP-1 receptor biased agonists exhibit promising treatment efficacy of type 2 diabetes and obesity. SAL0112 is a novel compound that has demonstrated remarkable efficacy in preclinical animal models. Herein, both in vitro and in vivo preclinical toxicity investigations were conducted to explore the safety profile of SAL0112. The HTRF assay and TR-FRET assay were utilized for cAMP detection. Patch clamp assay was employed for hERG potassium ion channel determination. Cynomolgus monkeys were used in a cardiovascular safety pharmacology study and a 13-week repeated dose toxicity study. The telemetry system was employed to detect cardiovascular indicators such as ECG, HR, and BP. During the repeated dose toxicity study, body weight, food intake, hematology, coagulation function test, serum biochemistry tests, and urine analysis were measured. Macroscopic and microscopic observations were conducted at the end of the study. TK studies were conducted on Day 1 and Day 91. SAL0112 exhibited a high degree of potency in activating the monkey GLP1 receptor whereas had no effect on the rodent GLP1 receptor. In contrast to Danuglipron, which demonstrated high potency on hERG with an IC50 value of 6.9 µM, the IC50 of SAL0112 on hERG was greater than 100 µM. Compared to the Vehicle Control group, no significant changes in cardiovascular indicators were observed in the cardiovascular safety pharmacology study after a single dose of SAL0112 up to 250 mg/kg (P > 0.05). A repeated dose toxicity study revealed moderate anorexigenic effects and a reduction in body weight, effects that were found to be reversible and not associated with any pathological changes. The NOAEL of SAL0112 is 150 mg/kg, providing an approximate safety margin of threefold. SAL0112 demonstrated a favorable safety profile in cynomolgus monkeys, with a substantial therapeutic window that supports the progression of this compound into clinical studies.

13.
Mol Cell Biochem ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642274

RESUMEN

Loss and functional failure of pancreatic ß-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for ß-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional ß-cells. In this review, we first introduce the development of functional ß-cells and their heterogeneity and then turn to highlight recent advances in the generation of ß-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.

14.
Eur Radiol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017934

RESUMEN

OBJECTIVES: To evaluate deep learning reconstruction (DLR)-based accelerated rectal magnetic resonance imaging (MRI) compared with standard MRI. MATERIALS AND METHODS: Patients with biopsy-confirmed rectal adenocarcinoma between November/2022 and May/2023 in a single centre were prospectively enrolled for an intra-individual comparison between standard fast spin-echo (FSEstandard) and DLR-based FSE (FSEDL) sequences. Quantitative and qualitative image quality metrics of the pre-therapeutic MRIs were evaluated in all patients; diagnostic performance and evaluating time for T-staging, N-staging, extramural vascular invasion (EMVI), and mesorectal fascia (MRF) status was further analysed in patients undergoing curative surgery, with histopathologic results as the diagnostic gold standard. RESULTS: A total of 117 patients were enrolled, with 60 patients undergoing curative surgery. FSEDL reduced the acquisition time by 65% than FSEstandard. FSEDL exhibited higher signal-to-noise ratios, contrast-to-noise ratio, and subjective scores (noise, tumour margin clarity, visualisation of bowel wall layering and MRF, overall image quality, and diagnostic confidence) than FSEstandard (p < 0.001). Reduced artefacts were observed in FSEDL for patients without spasmolytics (p < 0.05). FSEDL provided higher T-staging accuracy by junior readers than FSEstandard (reader 1, 58.33% vs 70.00%, p = 0.016; reader 3, 60.00% vs 76.67%, p = 0.021), with similar N-staging, EMVI, and MRF performance. No significant difference was observed for senior readers. FSEDL exhibited shorter diagnostic time in all readers' T-staging and overall evaluation, and junior readers' EMVI and MRF (p < 0.05). CONCLUSION: FSEDL provided improved image quality, reading time, and junior radiologists' T-staging accuracy than FSEstandard, while reducing the acquisition time by 65%. CLINICAL RELEVANCE STATEMENT: DLR is clinically applicable for rectal MRI, providing improved image quality with shorter scanning time, which may ease the examination burden. It is beneficial for diagnostic optimisation in improving junior radiologists' T-staging accuracy and reading time. KEY POINTS: The rising incidence of rectal cancer has demanded enhanced efficiency and quality in imaging examinations. FSEDL demonstrated superior image quality and had a 65% reduced acquisition time. FSEDL can improve the diagnostic accuracy of T-staging and reduce the reading time for assessing rectal cancer.

15.
Diabetes Obes Metab ; 26(4): 1395-1406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287130

RESUMEN

AIM: Novel long-acting drugs for type 2 diabetes mellitus may optimize patient compliance and glycaemic control. Exendin-4-IgG4-Fc (E4F4) is a long-acting glucagon-like peptide-1 receptor agonist. This first-in-human study investigated the safety, tolerability, pharmacokinetic, pharmacodynamic and immunogenicity profiles of a single subcutaneous injection of E4F4 in healthy subjects. METHODS: This single-centre, randomized, double-blind, placebo-controlled phase 1 clinical trial included 96 subjects in 10 sequential cohorts that were provided successively higher doses of E4F4 (0.45, 0.9, 1.8, 3.15, 4.5, 6.3, 8.1, 10.35, 12.6 and 14.85 mg) or placebo (ChinaDrugTrials.org.cn: ChiCTR2100049732). The primary endpoint was safety and tolerability of E4F4. Secondary endpoints were pharmacokinetic, pharmacodynamic and immunogenicity profiles of E4F4. Safety data to day 15 after the final subject in a cohort had been dosed were reviewed before commencing the next dose level. RESULTS: E4F4 was safe and well tolerated among healthy Chinese participants in this study. There was no obvious dose-dependent relationship between frequency, severity or causality of treatment-emergent adverse events. Cmax and area under the curve of E4F4 were dose proportional over the 0.45-14.85 mg dose range. Median Tmax and t1/2 ranged from 146 to 210 h and 199 to 252 h, respectively, across E4F4 doses, with no dose-dependent trends. For the intravenous glucose tolerance test, area under the curve of glucose in plasma from time 0 to 180 min showed a dose-response relationship in the 1.8-10.35 mg dose range, with an increased response at the higher doses. CONCLUSION: E4F4 exhibited an acceptable safety profile and linear pharmacokinetics in healthy subjects. The recommended phase 2 dose is 4.5-10.35 mg once every 2 weeks.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Exenatida/efectos adversos , Voluntarios Sanos , Área Bajo la Curva , Prueba de Tolerancia a la Glucosa , Método Doble Ciego , Relación Dosis-Respuesta a Droga
16.
Stat Med ; 43(17): 3294-3312, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38831542

RESUMEN

To study the roles that different nodes play in differentiating Bayesian networks under two states, such as control versus disease, we formulate two node-specific scores to facilitate such assessment. The first score is motivated by the prediction invariance property of a causal model. The second score results from modifying an existing score constructed for differential analysis of undirected networks. We develop strategies based on these scores to identify nodes responsible for topological differences between two Bayesian networks. Synthetic data and real-life data from designed experiments are used to demonstrate the efficacy of the proposed methods in detecting responsible nodes.


Asunto(s)
Teorema de Bayes , Modelos Estadísticos , Humanos , Simulación por Computador
17.
BMC Infect Dis ; 24(1): 549, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824572

RESUMEN

BACKGROUND: Nonpharmaceutical interventions (NPIs) implemented to reduce the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have suppressed the spread of other respiratory viruses during the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to explore the epidemiological trends and clinical characteristics of Mycoplasma pneumoniae (MP) infection among inpatient children with lower respiratory tract infection (LRTI) before and during the COVID-19 pandemic, and investigate the long-term effects of China's NPIs against COVID-19 on the epidemiology of MP among inpatient children with LRTI. METHODS: Children hospitalised for LRTI at the Department of Pulmonology, The Children's Hospital, Zhejiang University School of Medicine (Hangzhou, China) between January 2019 and December 2022 were tested for common respiratory pathogens, including Mycoplasma pneumoniae (MP), Chlamydia trachomatis (CT) and other bacteria. Clinical data on age, sex, season of onset, disease spectrum, and combined infection in children with MP-induced LRTI in the past 4 years were collected and analysed. RESULTS: Overall, 15909 patients were enrolled, and MP-positive cases were 1971 (34.0%), 73 (2.4%), 176 (5.8%), and 952 (20.6%) in 2019, 2020, 2021, and 2022, respectively, with a significant statistical difference in the MP-positive rate over the 4 years (p <0.001). The median age of these children was preschool age (3-6 years), except for 2022, when they were school age (7-12 years), with statistical differences. Comparing the positive rates of different age groups, the school-age children (7-12 years) had the highest positive rate, followed by the preschoolers (3-6 years) in each of the 4 years. Compared among different seasons, the positive rate of MP in children with LRTI was higher in summer and autumn, whereas in 2020, it was highest in spring. The monthly positive rate peaked in July 2019, remained low from 2020 to 2021, and rebounded until 2022. Regarding the disease spectrum, severe pneumonia accounted for the highest proportion (46.3%) pre-pandemic and lowest (0%) in 2020. CONCLUSION: Trends in MP detection in children with LRTIs suggest a possible correlation between COVID-19 NPIs and significantly reduced detection rates. The positivity rate of MP gradually rose after 2 years. The epidemic season showed some differences, but school-age children were more susceptible to MP before and during the COVID-19 pandemic.


Asunto(s)
COVID-19 , Mycoplasma pneumoniae , Neumonía por Mycoplasma , Infecciones del Sistema Respiratorio , Humanos , China/epidemiología , COVID-19/epidemiología , Niño , Preescolar , Masculino , Femenino , Neumonía por Mycoplasma/epidemiología , Neumonía por Mycoplasma/microbiología , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología , Adolescente , Lactante , SARS-CoV-2 , Pandemias
18.
J Immunol ; 208(5): 1204-1213, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35173034

RESUMEN

Pancreatic ß cell apoptosis is important in the pathogenesis of type 2 diabetes mellitus (T2DM). Generally, apoptotic ß cells are phagocytosed by macrophages in a process known as "efferocytosis." Efferocytosis is critical to the resolution of inflammation and is impaired in T2DM. Advanced glycation end products (AGEs), which are increased in T2DM, are known to suppress phagocytosis function in macrophages. In this study, we found that AGEs inhibited efferocytosis of apoptotic ß cells by primary peritoneal macrophages in C57BL/6J mice or mouse macrophage cell line Raw264.7. Mechanistically, AGEs inhibit efferocytosis by blocking Ras-related C3 botulinum toxin substrate 1 activity and cytoskeletal rearrangement through receptor for advanced glycation end products/ras homolog family member A/Rho kinase signaling in macrophages. Furthermore, it was observed that AGEs decreased the secretion of anti-inflammatory factors and promoted the proinflammatory ones to modulate the inflammation function of efferocytosis. Taken together, our results indicate that AGEs inhibit efferocytosis through binding to receptor for advanced glycation end products and activating ras homolog family member A/Rho kinase signaling, thereby inhibiting the anti-inflammatory function of efferocytosis.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Productos Finales de Glicación Avanzada/metabolismo , Células Secretoras de Insulina/metabolismo , Macrófagos Peritoneales/inmunología , Fagocitosis/fisiología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Apoptosis/fisiología , Toxinas Botulínicas/metabolismo , Línea Celular , Humanos , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Transducción de Señal/fisiología , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
19.
BMC Psychiatry ; 24(1): 589, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215260

RESUMEN

BACKGROUND: Occupational stress can affect specialty nurses' quality of work, especially for those working in care units. This study, therefore, investigated role stress and its related factors among specialty nurses working in tertiary general hospitals. METHODS: This cross-sectional descriptive study used convenience sampling to recruit 795 Chinese specialty nurses in 11 tertiary general hospitals (from February to March 2023). A questionnaire survey was conducted using the Basic Information Questionnaire and the Role Stress Scale. Multiple linear regression analyses were performed on the survey data to explore the factors affecting role stress. RESULTS: The total role stress score of specialty nurses in tertiary general hospitals was 52.05 ± 19.98. The highest mean item score was quantitative overload, followed by qualitative overload, role conflict, and role ambiguity, which had the lowest score. Multiple linear regression analysis revealed that gender (ß = -0.085, p < 0.05), educational background (ß = 0.077, p < 0.05), and work experience (ß = -0.104, p < 0.05) were the main factors influencing role stress among specialty nurses. CONCLUSIONS: Specialty nurses in tertiary general hospitals had higher levels of role stress than general nurses. Their role stress was primarily reflected in role overload, followed by role conflict and ambiguity. The factors affecting specialty nurses' role stress included gender, work experience, and educational background. Nursing managers should monitor the role stress experienced by specialty nurses in tertiary general hospitals. Providing psychological support for male specialty nurses, performance rewards and learning opportunities for highly educated specialty nurses, and continuous training for inexperienced specialty nurses are essential measures to relieve role stress.


Asunto(s)
Hospitales Generales , Estrés Laboral , Centros de Atención Terciaria , Humanos , Estudios Transversales , China , Femenino , Estrés Laboral/psicología , Adulto , Masculino , Personal de Enfermería en Hospital/psicología , Encuestas y Cuestionarios , Rol de la Enfermera , Persona de Mediana Edad , Adulto Joven
20.
Cell Mol Biol Lett ; 29(1): 12, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212723

RESUMEN

BACKGROUND: Extrachromosomal circular DNAs (eccDNAs) exist in human blood and somatic cells, and are essential for oncogene plasticity and drug resistance. However, the presence and impact of eccDNAs in type 2 diabetes mellitus (T2DM) remains inadequately understood. METHODS: We purified and sequenced the serum eccDNAs obtained from newly diagnosed T2DM patients and normal control (NC) subjects using Circle-sequencing. We validated the level of a novel circulating eccDNA named sorbin and SH3-domain- containing-1circle97206791-97208025 (SORBS1circle) in 106 newly diagnosed T2DM patients. The relationship between eccDNA SORBS1circle and clinical data was analyzed. Furthermore, we explored the source and expression level of eccDNA SORBS1circle in the high glucose and palmitate (HG/PA)-induced hepatocyte (HepG2 cell) insulin resistance model. RESULTS: A total of 22,543 and 19,195 eccDNAs were found in serum samples obtained from newly diagnosed T2DM patients and NC subjects, respectively. The T2DM patients had a greater distribution of eccDNA on chromosomes 1, 14, 16, 17, 18, 19, 20 and X. Additionally, 598 serum eccDNAs were found to be upregulated, while 856 eccDNAs were downregulated in T2DM patients compared with NC subjects. KEGG analysis demonstrated that the genes carried by eccDNAs were mainly associated with insulin resistance. Moreover, it was validated that the eccDNA SORBS1circle was significantly increased in serum of newly diagnosed T2DM patients (106 T2DM patients vs. 40 NC subjects). The serum eccDNA SORBS1circle content was positively correlated with the levels of glycosylated hemoglobin A1C (HbA1C) and homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM patients. Intracellular eccDNA SORBS1circle expression was significantly enhanced in the high glucose and palmitate (HG/PA)-induced hepatocyte (HepG2 cell) insulin resistance model. Moreover, the upregulation of eccDNA SORBS1circle in the HG/PA-treated HepG2 cells was dependent on generation of apoptotic DNA fragmentation. CONCLUSIONS: These results provide a preliminary understanding of the circulating eccDNA patterns at the early stage of T2DM and suggest that eccDNA SORBS1circle may be involved in the development of insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/genética , Diabetes Mellitus Tipo 2/genética , ADN , ADN Circular/genética , Palmitatos , Glucosa , Proteínas de Microfilamentos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA