Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2305208120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816049

RESUMEN

Polyploidization is important to the evolution of plants. Subgenome dominance is a distinct phenomenon associated with most allopolyploids. A gene on the dominant subgenome tends to express to higher RNA levels in all organs as compared to the expression of its syntenic paralogue (homoeolog). The mechanism that underlies the formation of subgenome dominance remains unknown, but there is evidence for the involvement of transposon/DNA methylation density differences nearby the genes of parents as being causal. The subgenome with lower density of transposon and methylation near genes is positively associated with subgenome dominance. Here, we generated eight generations of allotetraploid progenies from the merging of parental genomes Brassica rapa and Brassica oleracea. We found that transposon/methylation density differ near genes between the parental (rapa:oleracea) existed in the wide hybrid, persisted in the neotetraploids (the synthetic Brassica napus), but these neotetraploids expressed no expected subgenome dominance. This absence of B. rapa vs. B. oleracea subgenome dominance is particularly significant because, while there is no negative relationship between transposon/methylation level and subgenome dominance in the neotetraploids, the more ancient parental subgenomes for all Brassica did show differences in transposon/methylation densities near genes and did express, in the same samples of cells, biased gene expression diagnostic of subgenome dominance. We conclude that subgenome differences in methylated transposon near genes are not sufficient to initiate the biased gene expressions defining subgenome dominance. Our result was unexpected, and we suggest a "nuclear chimera" model to explain our data.


Asunto(s)
Brassica napus , Brassica rapa , Brassica , Brassica/genética , Genoma de Planta/genética , Brassica rapa/genética , Brassica napus/genética , Metilación de ADN/genética , Poliploidía
2.
Plant J ; 120(1): 174-186, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39133828

RESUMEN

Deep learning offers new approaches to investigate the mechanisms underlying complex biological phenomena, such as subgenome dominance. Subgenome dominance refers to the dominant expression and/or biased fractionation of genes in one subgenome of allopolyploids, which has shaped the evolution of a large group of plants. However, the underlying cause of subgenome dominance remains elusive. Here, we adopt deep learning to construct two convolutional neural network (CNN) models, binary expression model (BEM) and homoeolog contrast model (HCM), to investigate the mechanism underlying subgenome dominance using DNA sequence and methylation sites. We apply these CNN models to analyze three representative polyploidization systems, Brassica, Gossypium, and Cucurbitaceae, each with available ancient and neo/synthetic polyploidized genomes. The BEM shows that DNA sequence of the promoter region can accurately predict whether a gene is expressed or not. More importantly, the HCM shows that the DNA sequence of the promoter region predicts dominant expression status between homoeologous gene pairs retained from ancient polyploidizations, thus predicting subgenome dominance associated with these events. However, HCM fails to predict gene expression dominance between new homoeologous gene pairs arising from the neo/synthetic polyploidizations. These results are consistent across the three plant polyploidization systems, indicating broad applicability of our models. Furthermore, the two models based on methylation sites produce similar results. These results show that subgenome dominance is associated with long-term sequence differentiation between the promoters of homoeologs, suggesting that subgenome expression dominance precedes and is the driving force or even the determining factor for sequence divergence between subgenomes following polyploidization.


Asunto(s)
Aprendizaje Profundo , Genoma de Planta , Poliploidía , Genoma de Planta/genética , Metilación de ADN , Regiones Promotoras Genéticas/genética , Evolución Molecular , Redes Neurales de la Computación , Regulación de la Expresión Génica de las Plantas
3.
Plant Physiol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162415

RESUMEN

Polyploidization plays a crucial role in plant evolution and is becoming increasingly important in breeding. Structural variations and epigenomic repatterning have been observed in synthetic polyploidizations. However, the mechanisms underlying the occurrence and their effects on gene expression and phenotype remain unknown. Here, we investigated genome-wide large deletion/duplication regions (DelDups) and genomic methylation dynamics in leaf organs of progeny from the first eight generations of synthetic tetraploids derived from Chinese cabbage (Brassica rapa L. ssp. pekinensis) and cabbage (Brassica oleracea L. var. capitata). One- or two-copy DelDups, with a mean size of 5.70 Mb (400 kb - 65.85 Mb), occurred from the first generation of selfing and thereafter. The duplication of a fragment in one subgenome consistently coincided with the deletion of its syntenic fragment in the other subgenome, and vice versa, indicating that these DelDups were generated by homoeologous exchanges (HEs). Interestingly, the larger the genomic syntenic region, the higher the frequency of DelDups, further suggesting that the pairing of large homoeologous fragments is crucial for HEs. Moreover, we found that the active transcription of continuously distributed genes in local regions is positively associated with the occurrence of HE breakpoints. In addition, the expression of genes within DelDups exhibited a dosage effect, and plants with extra parental genomic fragments generally displayed phenotypes biased towards the corresponding parent. Genome-wide methylation fluctuated remarkably, which did not clearly affect gene expression on a large scale. Our findings provide insights into the early evolution of polyploid genomes, offering valuable knowledge for polyploidization-based breeding.

4.
Plant J ; 110(3): 627-645, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218099

RESUMEN

Occupation of living space is one of the main driving forces of adaptive evolution, especially for aquatic plants whose leaves float on the water surface and thus have limited living space. Euryale ferox, from the angiosperm basal family Nymphaeaceae, develops large, rapidly expanding leaves to compete for space on the water surface. Microscopic observation found that the cell proliferation of leaves is almost completed underwater, while the cell expansion occurs rapidly after they grow above water. To explore the mechanism underlying the specific development of leaves, we performed sequences assembly and analyzed the genome and transcriptome dynamics of E. ferox. Through reconstruction of the three sub-genomes generated from the paleo-hexaploidization event in E. ferox, we revealed that one sub-genome was phylogenetically closer to Victoria cruziana, which also exhibits gigantic floating leaves. Further analysis revealed that while all three sub-genomes promoted the evolution of the specific leaf development in E. ferox, the genes from the sub-genome closer to V. cruziana contributed more to this adaptive evolution. Moreover, we found that genes involved in cell proliferation and expansion, photosynthesis, and energy transportation were over-retained and showed strong expression association with the leaf development stages, such as the expression divergence of SWEET orthologs as energy uploaders and unloaders in the sink and source leaf organs of E. ferox. These findings provide novel insights into the genome evolution through polyploidization, as well as the adaptive evolution regarding the leaf development accomplished through biased gene retention and expression sub-functionalization of multi-copy genes in E. ferox.


Asunto(s)
Nymphaeaceae , Nymphaeaceae/genética , Nymphaeaceae/metabolismo , Fotosíntesis/genética , Hojas de la Planta/genética , Transcriptoma/genética , Agua/metabolismo
5.
Plant J ; 110(3): 688-706, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35118736

RESUMEN

Leaf heading is an important and economically valuable horticultural trait in many vegetables. The formation of a leafy head is a specialized leaf morphogenesis characterized by the emergence of the enlarged incurving leaves. However, the transcriptional regulation mechanisms underlying the transition to leaf heading remain unclear. We carried out large-scale time-series transcriptome assays covering the major vegetative growth phases of two headingBrassica crops, Chinese cabbage and cabbage, with the non-heading morphotype Taicai as the control. A regulatory transition stage that initiated the heading process is identified, accompanied by a developmental switch from rosette leaf to heading leaf in Chinese cabbages. This transition did not exist in the non-heading control. Moreover, we reveal that the heading transition stage is also conserved in the cabbage clade. Chinese cabbage acquired through domestication a leafy head independently from the origins of heading in other cabbages; phylogenetics supports that the ancestor of all cabbages is non-heading. The launch of the transition stage is closely associated with the ambient temperature. In addition, examination of the biological activities in the transition stage identified the ethylene pathway as particularly active, and we hypothesize that this pathway was targeted for selection for domestication to form the heading trait specifically in Chinese cabbage. In conclusion, our findings on the transcriptome transition that initiated the leaf heading in Chinese cabbage and cabbage provide a new perspective for future studies of leafy head crops.


Asunto(s)
Brassica , Brassica/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
6.
Genes (Basel) ; 15(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39202409

RESUMEN

Phosphorus is critical for plant growth but often becomes less accessible due to its precipitation with cations in soil. Fabaceae, a diverse plant family, exhibits robust adaptability and includes species like Lupinus albus, known for its efficient phosphorus utilization via cluster roots. Here, we systematically identified phosphorus-utilization-efficiency (PUE) gene families across 35 Fabaceae species, highlighting significant gene amplification in PUE pathways in Fabaceae. Different PUE pathways exhibited variable amplification, evolution, and retention patterns among various Fabaceae crops. Additionally, the number of homologous genes of the root hair development gene RSL2 in L. albus was far more than that in other Fabaceae species. Multiple copies of the RSL2 gene were amplified and retained in L. albus after whole genome triplication. The gene structure and motifs specifically retained in L. albus were different from homologous genes in other plants. Combining transcriptome analysis under low-phosphorus treatment, it was found that most of the homologous genes of RSL2 in L. albus showed high expression in the cluster roots, suggesting that the RSL2 gene family plays an important role in the adaptation process of L. albus to low-phosphorus environments and the formation of cluster roots.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lupinus , Fósforo , Proteínas de Plantas , Raíces de Plantas , Fósforo/metabolismo , Lupinus/genética , Lupinus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Adaptación Fisiológica/genética , Fabaceae/genética , Fabaceae/metabolismo , Familia de Multigenes , Filogenia , Genes de Plantas
7.
Mol Plant ; 17(4): 648-657, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38369755

RESUMEN

Constructing inbred lines for self-incompatible species and species with long generation times is challenging, making the use of F1 outcross/segregating populations the main strategy for genetic studies of such species. However, there is a lack of dedicated algorithms/tools for rapid quantitative trait locus (QTL) mapping using the F1 populations. To this end, we have designed and developed an algorithm/tool called OcBSA specifically for QTL mapping of F1 populations. OcBSA transforms the four-haplotype inheritance problem from the two heterozygous diploid parents of the F1 population into the two-haplotype inheritance problem common in current genetic studies by removing the two haplotypes from the heterozygous parent that do not contribute to phenotype segregation in the F1 population. Testing of OcBSA on 1800 simulated F1 populations demonstrated its advantages over other currently available tools in terms of sensitivity and accuracy. In addition, the broad applicability of OcBSA was validated by QTL mapping using seven reported F1 populations of apple, pear, peach, citrus, grape, tea, and rice. We also used OcBSA to map the QTL for flower color in a newly constructed F1 population of potato generated in this study. The OcBSA mapping result was verified by the insertion or deletion markers to be consistent with a previously reported locus harboring the ANTHOCYANIN 2 gene, which regulates potato flower color. Taken together, these results highlight the power and broad utility of OcBSA for QTL mapping using F1 populations and thus a great potential for functional gene mining in outcrossing species. For ease of use, we have developed both Windows and Linux versions of OcBSA, which are freely available at: https://gitee.com/Bioinformaticslab/OcBSA.


Asunto(s)
Patrón de Herencia , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico/métodos , Fenotipo
8.
Nat Genet ; 56(3): 517-529, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351383

RESUMEN

Brassica oleracea, globally cultivated for its vegetable crops, consists of very diverse morphotypes, characterized by specialized enlarged organs as harvested products. This makes B. oleracea an ideal model for studying rapid evolution and domestication. We constructed a B. oleracea pan-genome from 27 high-quality genomes representing all morphotypes and their wild relatives. We identified structural variations (SVs) among these genomes and characterized these in 704 B. oleracea accessions using graph-based genome tools. We show that SVs exert bidirectional effects on the expression of numerous genes, either suppressing through DNA methylation or promoting probably by harboring transcription factor-binding elements. The following examples illustrate the role of SVs modulating gene expression: SVs promoting BoPNY and suppressing BoCKX3 in cauliflower/broccoli, suppressing BoKAN1 and BoACS4 in cabbage and promoting BoMYBtf in ornamental kale. These results provide solid evidence for the role of SVs as dosage regulators of gene expression, driving B. oleracea domestication and diversification.


Asunto(s)
Brassica , Brassica/genética , Brassica/metabolismo , Genoma de Planta/genética , Expresión Génica
9.
Plant Commun ; 4(2): 100431, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36071668

RESUMEN

Orychophragmus violaceus, referred to as "eryuelan" (February orchid) in China, is an early-flowering ornamental plant. The high oil content and abundance of unsaturated fatty acids in O. violaceus seeds make it a potential high-quality oilseed crop. Here, we generated a whole-genome assembly for O. violaceus using Nanopore and Hi-C sequencing technologies. The assembled genome of O. violaceus was ∼1.3 Gb in size, with 12 pairs of chromosomes. Through investigation of ancestral genome evolution, we determined that the genome of O. violaceus experienced a tetraploidization event from a diploid progenitor with the translocated proto-Calepineae karyotype. Comparisons between the reconstructed subgenomes of O. violaceus identified indicators of subgenome dominance, indicating that subgenomes likely originated via allotetraploidy. O. violaceus was phylogenetically close to the Brassica genus, and tetraploidy in O. violaceus occurred approximately 8.57 million years ago, close in time to the whole-genome triplication of Brassica that likely arose via an intermediate tetraploid lineage. However, the tetraploidization in Orychophragmus was independent of the hexaploidization in Brassica, as evidenced by the results from detailed phylogenetic analyses and comparisons of the break and fusion points of ancestral genomic blocks. Moreover, identification of multi-copy genes regulating the production of high-quality oil highlighted the contributions of both tetraploidization and tandem duplication to functional innovation in O. violaceus. These findings provide novel insights into the polyploidization evolution of plant species and will promote both functional genomic studies and domestication/breeding efforts in O. violaceus.


Asunto(s)
Brassicaceae , Brassicaceae/genética , Filogenia , Hibridación Genética , Genoma de Planta , Genómica
10.
Genomics Proteomics Bioinformatics ; 20(6): 1106-1118, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35643190

RESUMEN

Rubus corchorifolius (Shanmei or mountain berry, 2n = 14) is widely distributed in China, and its fruits possess high nutritional and medicinal values. Here, we reported a high-quality chromosome-scale genome assembly of Shanmei, with contig size of 215.69 Mb and 26,696 genes. Genome comparison among Rosaceae species showed that Shanmei and Fupenzi (Rubus chingii Hu) were most closely related, followed by blackberry (Rubus occidentalis), and that environmental adaptation-related genes were expanded in the Shanmei genome. Further resequencing of 101 samples of Shanmei collected from four regions in the provinces of Yunnan, Hunan, Jiangxi, and Sichuan in China revealed that among these samples, the Hunan population of Shanmei possessed the highest diversity and represented the more ancestral population. Moreover, the Yunnan population underwent strong selection based on the nucleotide diversity, linkage disequilibrium, and historical effective population size analyses. Furthermore, genes from candidate genomic regions that showed strong divergence were significantly enriched in the flavonoid biosynthesis and plant hormone signal transduction pathways, indicating the genetic basis of adaptation of Shanmei to the local environment. The high-quality assembled genome and the variome dataset of Shanmei provide valuable resources for breeding applications and for elucidating the genome evolution and ecological adaptation of Rubus species.


Asunto(s)
Rubus , Rubus/genética , China , Análisis de Secuencia de ADN , Genómica , Desequilibrio de Ligamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA