RESUMEN
BACKGROUND: Endothelial cells (ECs) play a critical role in angiogenesis and vascular remodeling. The heterogeneity of ECs has been reported at adult stages, yet it has not been fully investigated. This study aims to assess the transcriptional heterogeneity of developmental ECs at spatiotemporal level and to reveal the changes of embryonic ECs clustering when endothelium-enriched microRNA-126 (miR-126) was specifically knocked out. METHODS: C57BL/6J mice embryos at day 14.5 were harvested and digested, followed by fluorescence-activated cell sorting to enrich ECs. Then, single-cell RNA sequencing was applied to enriched embryonic ECs. Tie2 (Tek receptor tyrosine kinase)-cre-mediated ECs-specific miR-126 knockout mice were constructed, and ECs from Tie2-cre-mediated ECs-specific miR-126 knockout embryos were subjected to single-cell RNA sequencing. RESULTS: Embryonic ECs were clustered into 11 groups corresponding to anatomic characteristics. The vascular bed (arteries, capillaries, veins, lymphatics) exhibited transcriptomic similarity across the developmental stage. Embryonic ECs had higher proliferative potential than adult ECs. Integrating analysis showed that 3 ECs populations (hepatic, mesenchymal transition, and pulmonary ECs) were apparently disorganized after miR-126 being knocked out. Gene ontology analysis revealed that disrupted ECs were mainly related to hypoxia, glycometabolism, and vascular calcification. Additionally, in vivo experiment showed that Tie2-cre-mediated ECs-specific miR-126 knockout mice exhibited excessive intussusceptive angiogenesis; reductive glucose and pyruvate tolerance; and excessive accumulation of calcium. Agonist miR-126-3p agomir significantly rescued the phenotype of glucose metabolic dysfunction in Tie2-cre-mediated ECs-specific miR-126 knockout mice. CONCLUSIONS: The heterogeneity of ECs is established as early as the embryonic stage. The deficiency of miR-126 disrupts the differentiation and diversification of embryonic ECs, suggesting that miR-126 plays an essential role in the maintenance of ECs heterogeneity.
Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , MicroARNs/genética , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Animales , Apoptosis/genética , Hipoxia de la Célula/genética , Linaje de la Célula/genética , Plasticidad de la Célula/genética , Proliferación Celular/genética , Células Endoteliales/clasificación , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Glucosa/metabolismo , Hígado/irrigación sanguínea , Hígado/embriología , Hígado/metabolismo , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/clasificación , Neovascularización Fisiológica/genética , Análisis de la Célula Individual , Análisis Espacio-Temporal , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patologíaRESUMEN
Based on six offspring with different mitochondrial (M) and parental nuclear (N) genotypes, the multi-stage morphological characteristics and nuclear transcriptomes of Lentinula edodes were compared to investigate morphogenesis mechanisms during cultivation, the key reason for cultivar resistance to genotype changes, and regulation related to biparental role changes. Six offspring had specific transcriptomic data and morphological characteristics that were mainly regulated by the two parental nuclei, followed by the cytoplasm, at different growth stages. Importing a wild N genotype easily leads to failure or instability of fruiting; however, importing wild M genotypes may improve cultivars. Major facilitator superfamily (MFS) transporter genes encoding specific metabolites in spawns may play crucial roles in fruiting body formation. Pellets from submerged cultivation and spawns from sawdust substrate cultivation showed different carbon metabolic pathways, especially in secondary metabolism, degradation of lignin, cellulose and hemicellulose, and plasma membrane transport (mainly MFS). When the stage of small young pileus (SYP) was formed on the surface of the bag, the spawns inside were mainly involved in nutrient accumulation. Just broken pileus (JBP) showed a different expression of plasma membrane transporter genes related to intracellular material transport compared to SYP and showed different ribosomal proteins and cytochrome P450 functioning in protein biosynthesis and metabolism than near spreading pileus (NSP). Biparental roles mainly regulate offspring metabolism, growth, and morphogenesis by differentially expressing specific genes during different vegetative growth stages. Additionally, some genes encoding glycine-rich RNA-binding proteins, F-box, and folliculin-interacting protein repeat-containing proteins may be related to multi-stage morphogenesis. KEY POINTS: ⢠Replacement of nuclear genotype is not suitable for cultivar breeding of L. edodes. ⢠Some genes show a biparental role-divergent expression at mycelial growth stage. ⢠Transcriptomic changes of some sawdust substrate cultivation stages have been elucidated.
RESUMEN
Edible mushrooms are nutritious, tasty, and have medicinal value, which makes them very popular. Fresh mushrooms have a high water content and a crisp texture. They demonstrate strong metabolic activity after harvesting. However, they are prone to textural changes, microbial infestation, and nutritional and flavor loss, and they therefore require appropriate post-harvest processing and preservation. Important factors affecting safety and quality during their processing and storage include their quality, source, microbial contamination, physical damage, and chemical residues. Thus, these aspects should be tested carefully to ensure safety. In recent years, many new techniques have been used to preserve mushrooms, including electrofluidic drying and cold plasma treatment, as well as new packaging and coating technologies. In terms of detection, many new detection techniques, such as nuclear magnetic resonance (NMR), imaging technology, and spectroscopy can be used as rapid and effective means of detection. This paper reviews the new technological methods for processing and detecting the quality of mainstream edible mushrooms. It mainly introduces their working principles and application, and highlights the future direction of preservation, processing, and quality detection technologies for edible mushrooms. Adopting appropriate post-harvest processing and preservation techniques can maintain the organoleptic properties, nutrition, and flavor of mushrooms effectively. The use of rapid, accurate, and non-destructive testing methods can provide a strong assurance of food safety. At present, these new processing, preservation and testing methods have achieved good results but at the same time there are certain shortcomings. So it is recommended that they also be continuously researched and improved, for example through the use of new technologies and combinations of different technologies. © 2023 Society of Chemical Industry.
Asunto(s)
Agaricales , Conservación de Alimentos/métodos , Desecación , TecnologíaRESUMEN
BACKGROUND: Lentinula edodes (Berk.) is the second most productive mushroom in the world. It contains compounds effective for antiviral, antitumor, antioxidant and immune regulation. Although genomes have previously been reported for this species, a high-quality chromosome-level reference for L. edodes is unavailable. This hinders detailed investigation of population genetics, breeding history of strains and genes related to environmental stress responses. RESULTS: A high-quality chromosome-level genome was constructed. We separated a monokaryon from protoplasts of the commercial L. edodes strain L808 and assembled the genome of L. edodes using PacBio long-read and Illumina short-read sequencing, along with the high-throughput chromatin conformation capture (Hi-C) technique. We assembled a 45.87 Mb genome, and 99% of the sequences were anchored onto 10 chromosomes. The contig and scaffold N50 length were 2.17 and 4.94 Mb, respectively. Over 96% of the complete Benchmarking Universal Single-Copy Orthologs (BUSCO) were identified, and 9853 protein-coding genes were predicted. We performed population genome resequencing using 34 wild strains and 65 commercial cultivars of L. edodes originating from China, Japan, the United States and Australia. Based on whole-genome variants, we showed substantial differences in the Chinese wild population, which divided into different branches according to the main areas of their geographical distribution. We also determined the breeding history of L. edodes at the molecular level, and demonstrated that the cultivated strains in China mainly originated from wild strains from China and Northeast Asia. Phenotypic analysis showed that 99 strains exhibited differences on the Cd accumulation. Three significant loci in the of L. edodes genome were identified using the genome-wide association study (GWAS) of Cd accumulation traits. Functional genes associated with Cd accumulation traits were related to DNA ligase and aminoacyl tRNA synthetase, indicating that DNA damage repair and in vivo protein translation may be responses to Cd stress. CONCLUSIONS: A high-quality chromosome-level genome and population genetic data of L. edodes provide genetic resources for functional genomic, evolutionary and artificial breeding studies for L. edodes.
Asunto(s)
Hongos Shiitake , Cadmio , Cromosomas , Genoma , Estudio de Asociación del Genoma Completo , Hongos Shiitake/genéticaRESUMEN
Diabetic encephalopathy (DE) is one of the chronic complications of diabetes. Even then, the molecular mechanism underlying DE remains unexplored. In this study, we have made an attempt to investigate the metabolic changes associated with the streptozocin (STZ)-induced cognitive dysfunction in the hippocampus of the rat model, a classical rodent model for DE, with the help of Gas Chromatography-Mass Spectrometry-based method. The STZ injections led to the rise of mean blood glucose levels in the diabetes mellitus (DM) group of rats as compared to the control (CON) group of rats throughout the experiment. However, we did not find any significant difference between the blood glucose levels of the DM & the CON groups of rats before the STZ injection. The results indicated a behavioral and morphological cognitive dysfunction in the DM groups of rats. The metabolomic investigation of these DE rats demonstrated a lower level of N-acetylaspartate and dihydroxyacetone phosphate accompanied by a higher level of homocysteine and glutamate as against the CON group of rats. The outcome of this study may unravel the underlying pathophysiological mechanism of DE. Also, the metabolomic data from this study may provide a platform for the development of DE biomarkers.
Asunto(s)
Encefalopatías/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Animales , Encefalopatías/inducido químicamente , Encefalopatías/patología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Hipocampo/patología , Masculino , Ratas , Ratas Sprague-Dawley , Estreptozocina/toxicidadRESUMEN
Genetic mapping is a basic tool for eukaryotic genomic research. It allows the localization of genes or quantitative trait loci (QTLs) and map-based cloning. In this study, we constructed a linkage map based on DNA samples from a commercial strain L808, including two parental monokaryons and 93 single spore isolates considered with segregating to 1:1:1:1 at four mating types (A1B1, A1B2, A2B1 and A2B2). Using Simple Sequence Repeats (SSR), Sequence Related Amplified Polymorphism (SRAP), Target Region Amplified Polymorphism (TRAP) molecular markers, 182 molecular markers and two mating factors were located on 11 linkage groups (LGs). The total length of the map was 948.083 centimorgan (cM), with an average marker interval distance of 4.817 cM. Only two gaps spanning more than 20 cM was observed. The probability of 20 cM, 10 cM, 5 cM genetic distance cover one marker was 99.68%, 94.36%, 76.43% in our genetic linkage map, respectively. This is the first linkage map of Lentinula edodes using SSR markers, which provides essential information for quantitative trait analyses and improvement of genome assembly.
RESUMEN
Saccharopine dehydrogenase (EC 1.5.1.7) regulates the last step of fungal lysine biosynthesis. The gene (Fvsdh) encoding saccharopine dehydrogenase was identified and cloned from the whole genome of Flammulina velutipes. The genomic DNA of Fvsdh is 1257 bp, comprising three introns and four exons. The full-length complementary DNA of Fvsdh comprises 1107 bp with a deduced amino acid sequence of 368 residues. A 1,000-bp promoter sequence containing the TATA box, CAAT box, and several putative cis-acting elements was also identified. The results of tissue expression analysis showed that the expression level of the Fvsdh gene was higher in the pileus than in the stipe whether in the elongation or maturation stage. Further research showed that the lysine contents were 3.03 and 2.95 mg/g in maturation-pileus and elongation-pileus, respectively. In contrast, the lysine contents were 2.49 and 2.07 mg/g in elongation-stipe and maturation-stipe, respectively. To study the function of Fvsdh, we overexpressed Fvsdh in F. velutipes and found that Fvsdh gene expression was increased from 1.1- to 3-fold in randomly selected transgenic strains. The lysine contents were also increased from 1.12- to 1.3-fold in these five transformants, except for strain T3, in which the lysine contents were the same as the control. These results indicate that the expression of the Fvsdh gene can affect the lysine content of F. velutipes.
Asunto(s)
Flammulina/genética , Flammulina/metabolismo , Proteínas Fúngicas/genética , Lisina/biosíntesis , Sacaropina Deshidrogenasas/genética , Secuencia de Bases , Vías Biosintéticas/genética , Clonación Molecular , Flammulina/clasificación , Flammulina/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Expresión Génica , Regulación Fúngica de la Expresión Génica , Filogenia , Regiones Promotoras Genéticas , Sacaropina Deshidrogenasas/metabolismoRESUMEN
The Roegneria of Triticeae is a large genus including about 130 allopolyploid species. Little is known about its high-molecular-weight glutenin subunits (HMW-GSs). Here, we reported six novel HMW-GS genes from R. nakaii and R. alashanica. Sequencing indicated that Rny1, Rny3, and Ray1 possessed intact open reading frames (ORFs), whereas Rny2, Rny4, and Ray2 harbored in-frame stop codons. All of the six genes possessed a similar primary structure to known HMW-GS, while showing some unique characteristics. Their coding regions were significantly shorter than Glu-1 genes in wheat. The amino acid sequences revealed that all of the six genes were intermediate towards the y-type. The phylogenetic analysis showed that the HMW-GSs from species with St, StY, or StH genome(s) clustered in an independent clade, varying from the typical x- and y-type clusters. Thus, the Glu-1 locus in R. nakaii and R. alashanica is a very primitive glutenin locus across evolution. The six genes were phylogenetically split into two groups clustered to different clades, respectively, each of the two clades included the HMW-GSs from species with St (diploid and tetraploid species), StY, and StH genomes. Hence, it is concluded that the six Roegneria HMW-GS genes are from two St genomes undergoing slight differentiation.
Asunto(s)
Evolución Molecular , Genes de Plantas/genética , Glútenes/genética , Poaceae/genética , Secuencia de Aminoácidos , Western Blotting , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Peso Molecular , Filogenia , Poaceae/clasificación , Reacción en Cadena de la Polimerasa , Subunidades de Proteína , Homología de Secuencia de Aminoácido , Especificidad de la EspecieRESUMEN
BACKGROUND: High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat. Mutations induced by ion beam radiation have been applied to improve the yield and quality of crop. In this study, HMW-GS-deficient mutant lines were selected and the effects of Glu-1 loci deletion on wheat quality properties were illustrated according to the analysis of dry seeds of common wheat (Triticum aestivum L.) Xiaoyan 81 treated with a nitrogen ion beam. RESULTS: Three HMW-GS-deficient mutant lines were obtained and then detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Large-chromosome-fragment deletion resulted in specific deficiencies, and the deleted region sizes were determined using molecular markers. Agronomic characters, quantity and proportion of glutenins and dough microstructure of the deletion lines all proved to be quite different from those of wild-type Xiaoyan 81. Analysis of quality properties suggested that GluA1(-) had superior property parameters, while GluB1(-) and GluD1(-) both showed a significant decrease in quality properties compared with Xiaoyan 81. CONCLUSION: The effects of the three Glu-1 loci on flour and dough quality-related parameters should be Glu-D1 > Glu-B1 > Glu-A1. Ion beam radiation can be used as a mutagen to create new crop mutants.
Asunto(s)
Eliminación de Gen , Sitios Genéticos/genética , Glútenes/química , Glútenes/genética , Triticum/química , Triticum/genética , Pan/análisis , ADN de Plantas/análisis , Elasticidad , Electroforesis en Gel de Poliacrilamida , Harina/análisis , Genes de Plantas , Glútenes/fisiología , Microscopía Electrónica de Rastreo , Peso Molecular , Reacción en Cadena de la Polimerasa , Subunidades de Proteína/análisis , Subunidades de Proteína/química , Subunidades de Proteína/fisiología , Semillas/química , Semillas/genética , ViscosidadRESUMEN
BACKGROUND: Human Borna disease virus (BDV) infections have recently been reported in China. BDV causes cognitive and behavioural disturbances in animals. The impact on human mental disorders is subject to debate, but previous studies worldwide have found neuropsychiatric patients more frequently infected than healthy controls. A few isolates were recovered from severely depressed patients, but contagiousness of BDV strain remains unknown. METHOD: We addressed the risk of infection in health care settings at the first affiliated hospital of Chongqing Medical University (CQMU), located in downtown Chongqing, a megacity in Southwest China. Between February 2012 and March 2013, we enrolled 1529 participants, of whom 534 were outpatients with major depressive disorder (MDD), 615 were hospital personnel, and 380 were healthy controls who underwent a health check. Infection was determined through BDV-specific circulating immune complexes (CIC), RNA, and selective antibodies (blood). RESULTS: One-fifth of the hospital staff (21.8%) were found to be infected (CIC positive), with the highest prevalence among psychiatry and oncology personnel, which is twice as many as were detected in the healthy control group (11.1%), and exceeds the prevalence detected in MDD patients (18.2%). CONCLUSION: BDV circulates unnoticed in hospital settings in China, putting medical staff at risk and warranting clarification of infection modes and introduction of prevention measures.
Asunto(s)
Enfermedad de Borna/virología , Virus de la Enfermedad de Borna/aislamiento & purificación , Trastorno Depresivo Mayor/virología , Personal de Salud/estadística & datos numéricos , Enfermedades Profesionales/virología , Adolescente , Adulto , Anciano , Anticuerpos Antivirales/sangre , Enfermedad de Borna/sangre , Enfermedad de Borna/diagnóstico , Enfermedad de Borna/epidemiología , Virus de la Enfermedad de Borna/inmunología , Estudios de Casos y Controles , China/epidemiología , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/epidemiología , Femenino , Hospitales/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Profesionales/sangre , Enfermedades Profesionales/diagnóstico , Enfermedades Profesionales/epidemiología , Exposición Profesional/estadística & datos numéricos , Adulto JovenRESUMEN
Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. Previous studies have revealed that metabolic perturbations are associated with BDV infection. However, the pathophysiological effects of different viral strains remain largely unknown. Rat cortical neurons infected with human strain BDV Hu-H1, laboratory BDV Strain V, and non-infected control (CON) cells were cultured in vitro. At day 12 post-infection, a gas chromatography coupled with mass spectrometry (GC-MS) metabonomic approach was used to differentiate the metabonomic profiles of 35 independent intracellular samples from Hu-H1-infected cells (n = 12), Strain V-infected cells (n = 12), and CON cells (n = 11). Partial least squares discriminant analysis (PLS-DA) was performed to demonstrate discrimination between the three groups. Further statistical testing determined which individual metabolites displayed significant differences between groups. PLS-DA demonstrated that the whole metabolic pattern enabled statistical discrimination between groups. We identified 31 differential metabolites in the Hu-H1 and CON groups (21 decreased and 10 increased in Hu-H1 relative to CON), 35 differential metabolites in the Strain V and CON groups (30 decreased and 5 increased in Strain V relative to CON), and 21 differential metabolites in the Hu-H1 and Strain V groups (8 decreased and 13 increased in Hu-H1 relative to Strain V). Comparative metabonomic profiling revealed divergent perturbations in key energy and amino acid metabolites between natural strain Hu-H1 and laboratory Strain V of BDV. The two BDV strains differentially alter metabolic pathways of rat cortical neurons in vitro. Their systematic classification provides a valuable template for improved BDV strain definition in future studies.
Asunto(s)
Enfermedad de Borna/metabolismo , Virus de la Enfermedad de Borna/metabolismo , Encéfalo/virología , Neuronas/metabolismo , Neuronas/virología , Ratas/virología , Animales , Enfermedad de Borna/patología , Enfermedad de Borna/virología , Virus de la Enfermedad de Borna/aislamiento & purificación , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Metaboloma , Metabolómica , Neuronas/patología , Ratas/metabolismo , Ratas Sprague-DawleyRESUMEN
Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is the most commonly-used technique to identify gene expression profiles. The selection of stably expressed reference genes is a prerequisite to properly evaluating gene expression. Here, the suitability of commonly-used reference genes in normalizing RT-qPCR assays of mRNA expression in cultured rat cortical neurons infected with Borna disease virus (BDV) was assessed. The expressions of eight commonly-used reference genes were comparatively analyzed in BDV-infected rat cortical neurons and non-infected control neurons mainly across 9 and 12 days post-infection. These reference genes were validated by RT-qPCR and separately ranked by four statistical algorithms: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. Then, the RankAggreg package was used to construct consensus rankings. ARBP was found to be the most stable internal control gene at Day 9, and ACTB at Day 12. As the assessment of the validity of the selected reference genes confirms the suitability of applying a combination of the two most stable references genes, combining the two most stable genes for normalization of RT-qPCR studies in BDV-infected rat cortical neurons is recommended at each time point. This study can contribute to improving BDV research by providing the means by which to obtain more reliable and accurate gene expression measurements.
Asunto(s)
Enfermedad de Borna/genética , Enfermedad de Borna/virología , Virus de la Enfermedad de Borna/fisiología , Corteza Cerebral/patología , Neuronas/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Estándares de Referencia , Reproducibilidad de los Resultados , Programas InformáticosRESUMEN
Surface enhanced fluorescence (SEF) based on noble metal nanoparticles is an effective means to achieve high sensitivity in fluorescence detection. Currently, the physical mechanism behind enhanced fluorescence is not fully understood. This paper measures the fluorescence signals of Dihydroporphyrin f methyl ether (CPD4) under both single-photon and two-photon excitation based on submicrometer silver particles with rough morphologies, achieving enhancement factors of 34 and 45 times, respectively. On this basis, by combining the radiative field characteristics produced by the silver particles, a stimulated radiation model of molecules is established to elucidate the changes in the molecular photophysical process when influenced by silver particles. Moreover, the fluorescence lifetime of the molecules was measured, showing that the presence of silver particles induces an increase in the molecular radiative decay rate, causing the fluorescence lifetime to decay from 3.8 ns to 3 ns. The results indicate that the fluorescence enhancement primarily originates from the submicrometer silver particles' enhancement effect on the excitation light. Additionally, the fluorescence signal emitted by the molecules couples with the silver particles, causing the local surface plasmon resonances generated by the silver particles to also emit light signals of the same frequency. Under the combined effect, the fluorescence of the molecules is significantly enhanced. The findings provide a theoretical foundation for understanding the fluorescence enhancement mechanism of silver particles, adjusting the enhancement effect, and developing enhanced fluorescence detection devices based on submicrometer silver particles, holding significant practical importance.
RESUMEN
Marine heatwaves (MHWs) and total heat exposures (THEs), extreme warming events occurring across the global oceans, seriously threaten marine ecosystems and coastal communities as the climate warms. However, future changes in MHWs and THEs in the Arctic Ocean, where unique marine ecosystems are present, are still unclear. Here, based on the latest CMIP6 climate simulations, we find that both MHWs and THEs in the Arctic Ocean are anticipated to intensify in a warming climate, mainly due to Arctic sea ice decline and long-term warming trend, respectively. Particularly striking is the projected rise in MHW mean intensity during the 21st century in the Arctic Ocean, surpassing the global average by more than sevenfold under the CMIP6 SSP585 scenario. This phenomenon, coined the 'Arctic MHW Amplification', underscores an impending and disproportionately elevated threat to the Arctic marine life, necessitating targeted conservation and adaptive strategies.
RESUMEN
AIMS: MicroRNA-126 (miR-126), one of the most abundant microRNAs in platelets, is involved in the regulation of platelet activity and the circulating miR-126 is reduced during antiplatelet therapy. However, whether intraplatelet miR-126 plays a role in thrombosis and platelet inhibition remains unclear. METHODS AND RESULTS: Here, using tissue-specific knockout mice, we reported that the deficiency of miR-126 in platelets and vascular endothelial cells significantly prevented thrombosis and prolonged bleeding time. Using chimeric mice, we identified that the lack of intraplatelet miR-126 significantly prevented thrombosis. Ex vivo experiments further demonstrated that miR-126-deficient platelets displayed impaired platelet aggregation, spreading, and secretory functions. Next, miR-126 was confirmed to target phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) in platelet, which encodes a negative regulator of the phosphoinositide 3-kinase/protein kinase B pathway, enhancing platelet activation through activating the integrin αIIbß3-mediated outside-in signalling. After undergoing myocardial infarction (MI), chimeric mice lacking intraplatelet miR-126 displayed reduced microvascular obstruction and prevented MI expansion in vivo. In contrast, overexpression of miR-126 by the administration of miR-126 agonist (agomiR-126) in wild-type mice aggravated microvascular obstruction and promoted MI expansion, which can be almost abolished by aspirin administration. In patients with cardiovascular diseases, antiplatelet therapies, either aspirin alone or combined with clopidogrel, decreased the level of intraplatelet miR-126. The reduction of intraplatelet miR-126 level was associated with the decrease in platelet activity. CONCLUSION: Our murine and human data reveal that (i) intraplatelet miR-126 contributes to platelet activity and promotes thrombus formation, and (ii) the reduction of intraplatelet miR-126 contributes to platelet inhibition during antiplatelet therapy.
Asunto(s)
Plaquetas , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs , Infarto del Miocardio , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Transducción de Señal , Trombosis , Animales , MicroARNs/metabolismo , MicroARNs/genética , MicroARNs/sangre , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/enzimología , Inhibidores de Agregación Plaquetaria/farmacología , Humanos , Trombosis/genética , Trombosis/prevención & control , Trombosis/sangre , Trombosis/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Agregación Plaquetaria/efectos de los fármacos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Clopidogrel/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Cultivadas , Tiempo de Sangría , Aspirina/farmacología , Activación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/genéticaRESUMEN
[This corrects the article DOI: 10.3389/fncom.2023.1145209.].
RESUMEN
Human motion prediction is one of the fundamental studies of computer vision. Much work based on deep learning has shown impressive performance for it in recent years. However, long-term prediction and human skeletal deformation are still challenging tasks for human motion prediction. For accurate prediction, this paper proposes a GCN-based two-stage prediction method. We train a prediction model in the first stage. Using multiple cascaded spatial attention graph convolution layers (SAGCL) to extract features, the prediction model generates an initial motion sequence of future actions based on the observed pose. Since the initial pose generated in the first stage often deviates from natural human body motion, such as a motion sequence in which the length of a bone is changed. So the task of the second stage is to fine-tune the predicted pose and make it closer to natural motion. We present a fine-tuning model including multiple cascaded causally temporal-graph convolution layers (CT-GCL). We apply the spatial coordinate error of joints and bone length error as loss functions to train the fine-tuning model. We validate our model on Human3.6m and CMU-MoCap datasets. Extensive experiments show that the two-stage prediction method outperforms state-of-the-art methods. The limitations of proposed methods are discussed as well, hoping to make a breakthrough in future exploration.
RESUMEN
This study investigated the potential of yeast extract and radio frequency (RF) treatment as a strategy of reducing salt and enhancing saltiness perception for Lentinus edodes bud. The results of E-nose demonstrated yeast extract and RF treatment improved the saltiness of Lentinus edodes bud. Meanwhile, yeast extract and RF treatment significantly decreased the addition of salt (P < 0.05), and led to the formation of special flavor substances, whereas amino acid nitrogen content decreased. On the other hand, sensory attribute, hardness, total flavonoid and phenolic content, antioxidant capacity of L. edodes buds significantly (P < 0.05) increased after the yeast extract combined with RF treatment. In addition, the modification of water distribution, the formation of dense structure, uniform microstructure and Na+ distribution were observed in treated sample, causing the enhancement of saltiness perception. Accordingly, the alteration of properties contributed to higher sensory properties of texture, taste, flavor, and overall acceptability.
Asunto(s)
Hongos Shiitake , Hongos Shiitake/química , Antioxidantes , Cloruro de Sodio Dietético , Cloruro de Sodio , Flavonoides , Agua/química , Percepción , Aminoácidos , NitrógenoRESUMEN
Research interest in biochar as an environmental remediation material has rapidly increased over the past few years. However, the effect of biochar on typical environmental processes in anaerobic soil environment has been insufficiently discussed. By regulating the electron donors with sodium acetate or pyruvate, the effects and underpinning chemical-microbiological coupling mechanisms of biochar under anaerobic conditions were disclosed. Unlike the electron limited condition, the addition of electron donors alleviated the competition for electrons among various reduction processes in the soil. The effect of biochar in regulating the electron transfer processes was lessened. But more than doubled methane emissions were resulted by the exogenous substances, especially with the synergic effect of biochar. Biochar addition increased soil environmental heterogeneity. It might indirectly affect the reductive transformation of γ-HCH via increasing the bioavailability of pollutants through adsorption and promoting the metabolism of some rare microorganisms. Anaerolineaceae, Peptococcaceae and Methanosarcina had coherent phylogenetic patterns and were likely to be the enablers for the reductive dechlorination process in flooded soil. ENVIRONMENTAL IMPLICATION: Previous studies have widely reported the performance characteristics of biochar, but its effects under anaerobic environments are not systematically understood. By regulating the electron donors, the competition for electrons among various reduction processes in the soil might be alleviated, resulting in a lessened effect of biochar in regulating the electron transfer processes. The findings presented in this study highlight the role of biochar to the dynamic changes of reduction processes under anaerobic environments. The relevant soil conditions such as the electron donors and the functional microbial groups should be adequately considered for maximizing the all-around beneficial efficiency of biochar amendments.
Asunto(s)
Contaminantes del Suelo , Suelo , Electrones , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Anaerobiosis , Filogenia , Carbón OrgánicoRESUMEN
Di-(2-ethylhexyl) phthalate (DEHP) is among the most widely used plasticizers in plastic production, which has been detected in various environments. However, DEHP safety remains poorly known. Using zebrafish models, the effects of DEHP on the angiogenesis and hematopoiesis, and the underlying mechanism, were studied. Transgenic zebrafish embryos with specific fluorescence of vascular endothelial cells, myeloid cells, or hematopoietic stem cells were exposed to 0, 100, 150, 200, or 250 nM of DEHP for 22, 46 or 70 h, followed by fluorescence observation, endogenous alkaline phosphatase activity measurement, erythrocyte staining, and gene expression analysis by quantitative PCR and whole mount in situ hybridization. High DEHP concentrations decreased the sprouting rate, average diameter, and length, and the expansion area of the vessels lowered the EAP activity and suppressed the vascular endothelial growth factor (vegf) and hematopoietic marker genes, including c-myb, hbae1, hbbe1, and lyz expressions. DEHP treatment also decreased the number of hematopoietic stem cells, erythrocytes, and myeloid cells at 24 and 72 hpf. These DEHP-induced angiogenetic and hematopoietic defects might be alleviated by vegf overexpression. Our results reveal a plausible mechanistic link between DEHP exposure-induced embryonic angiogenetic defect and hematopoietic impairment.