RESUMEN
Mitophagy is essential for cellular homeostasis, but how mitophagy is regulated is largely unknown. Here we found that the kinase Jnk2 was required for stress-induced mitophagy. Jnk2 promoted ubiquitination and proteasomal degradation of the small mitochondrial form of the tumor suppressor ARF (smARF). Loss of Jnk2 led to the accumulation of smARF, which induced excessive autophagy that resulted in lysosomal degradation of the mitophagy adaptor p62 at steady state. Depletion of p62 prevented Jnk2-deficient cells from mounting mitophagy upon stress. Jnk2-deficient mice displayed defective mitophagy, which resulted in tissue damage under hypoxic stress, as well as hyperactivation of inflammasomes and increased mortality in sepsis. Our findings define a unique mechanism of maintaining immunological homeostasis that protects the host from tissue damage and mortality.
Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Hipoxia/inmunología , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sepsis/inmunología , Animales , Células Cultivadas , Daño del ADN/fisiología , Femenino , Inflamasomas/metabolismo , Lipopolisacáridos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 9 Activada por Mitógenos/genética , Mitofagia/genética , Proteolisis , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sepsis/inducido químicamente , UbiquitinaciónRESUMEN
Recent studies report that stem cell therapies have been applied successfully to patients, This has increased anticipations that this regeneration strategy could be a potential method to treat a wide range of intractable diseases some day. Stem cells offer new prospects for the treatment of incurable diseases and for tissue regeneration and repairation because of their unique biological properties. Angiogenesis a key process in tissue regeneration and repairation. Vascularization of organs is one of the main challenges hindering the clinical application of engineered tissues. Efficient production of engineered vascular grafts and vascularized organs is of critical importance for regenerative medicine. In this review, we focus on the types of stem cells that are widely used in tissue engineering and regeneration, as well as their application of these stem cells in the construction of tissue-engineered vascular grafts and vascularization of tissue-engineered organs.
Asunto(s)
Neovascularización Fisiológica , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Células Madre , Medicina Regenerativa , Neovascularización PatológicaRESUMEN
The single-nucleotide polymorphism rs3197999 in the macrophage-stimulating protein 1 gene is a missense variant. Studies have indicated that macrophage-stimulating protein 1 mediates neuronal loss and synaptic plasticity damage, and overexpression of the macrophage-stimulating protein 1 gene leads to the excessive activation of microglial cells, thereby resulting in an elevation of cerebral glucose metabolism. Traditional diagnostic models may be disrupted by neuroinflammation, making it difficult to predict the pathological status of patients solely based on single-modal images. We hypothesize that the macrophage-stimulating protein 1 rs3197999 single-nucleotide polymorphism may lead to imbalances in glucose and oxygen metabolism, thereby influencing cognitive resilience and the progression of Alzheimer's disease. In this study, we found that among 121 patients with mild cognitive impairment, carriers of the macrophage-stimulating protein 1 rs3197999 risk allele showed a significant reduction in the coupling of glucose and oxygen metabolism in the dorsolateral prefrontal cortex region. However, the rs3197999 variant did not induce significant differences in glucose metabolism and neuronal activity signals. Furthermore, the rs3197999 risk allele correlated with a higher rate of increase in clinical dementia score, mediated by the coupling of glucose and oxygen metabolism.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Glucosa , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , BiomarcadoresRESUMEN
In recent years, brain imaging genomics has advanced significantly in revealing underlying pathological mechanisms of Alzheimer's disease (AD) and providing early diagnosis. In this paper, we present a framework for diagnosing AD that integrates magnetic resonance imaging (fMRI) genetic preprocessing, feature selection, and a support vector machine (SVM) model. In particular, a novel sand cat swarm optimization (SCSO) algorithm, named SS-SCSO, which integrates the spiral search strategy and alert mechanism from the sparrow search algorithm, is proposed to optimize the SVM parameters. The optimization efficacy of the SS-SCSO algorithm is evaluated using CEC2017 benchmark functions, with results compared with other metaheuristic algorithms (MAs). The proposed SS-SCSO-SVM framework has been effectively employed to classify different stages of cognitive impairment in Alzheimer's Disease using imaging genetic datasets from the Alzheimer's Disease Neuroimaging Initiative. It has demonstrated excellent classification accuracies for four typical cases, including AD, early mild cognitive impairment, late mild cognitive impairment, and healthy control. Furthermore, experiment results indicate that the SS-SCSO-SVM algorithm has a stronger exploration capability for diagnosing AD compared to other well-established MAs and machine learning techniques.
Asunto(s)
Algoritmos , Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Máquina de Vectores de Soporte , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Genómica de Imágenes/métodos , Neuroimagen/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Masculino , Anciano , FemeninoRESUMEN
High-entropy-alloy nanoparticles (HEA NPs) exhibit promising potential in various catalytic applications, yet a robust synthesis strategy has been elusive. Here, we introduce a straightforward and universal method, involving the microexplosion of Leidenfrost droplets housing carbon black and metal salt precursors, to fabricate PtRhPdIrRu HEA NPs with a size of â¼2.3 nm. The accumulated pressure within the Leidenfrost droplet triggers an intense explosion within milliseconds, propelling the carbon support and metal salt rapidly into the hot solvent through explosive force. The exceptionally quick temperature rise ensures the coreduction of metal salts, and the dilute local concentration of metal ions limits the final size of the HEA NPs. Additionally, the explosion process can be fine-tuned by selecting different solvents, enabling the harvesting of diverse HEA NPs with superior electrocatalytic activity for alcohol electrooxidation and hydrogen electrocatalysis compared to commercial Pt (Pd) unitary catalysts.
RESUMEN
ZnSeTe quantum dots (QDs) offer an efficient avenue for realizing heavy-metal-free light-emitting diodes (LEDs) that meet the Rec.2100 blue standard. Synthetic core-shell engineering has enabled big advances in the external quantum efficiency (EQE) of ZnSeTe QD-LEDs. However, the mechanisms behind the degradation of the operational stability of ZnSeTe QD-LEDs remain relatively unexplored. In this study, we explore the impact of ligand density and composition on both material and device stability. We developed a solid-film ligand exchange utilizing an inorganic X-type ligand (zinc chloride), revealing that the substitution of inorganic ligands for organic counterparts significantly influences the stability of both materials and devices.
RESUMEN
BACKGROUND: Recent evidence from thrombolysis trials indicates the noninferiority of intravenous tenecteplase to intravenous alteplase with respect to good functional outcomes in patients with acute stroke. We examined whether the health-related quality of life (HRQOL) of patients with acute stroke differs by the type of thrombolysis treatment received. In addition, we examined the association between the modified Rankin Scale score 0 to 1 and HRQOL and patient-reported return to prebaseline stroke functioning at 90 days. METHODS: Data were from all patients included in the AcT trial (Alteplase Compared to Tenecteplase), a pragmatic, registry-linked randomized trial comparing tenecteplase with alteplase. HRQOL at 90-day post-randomization was assessed using the 5-item EuroQOL questionnaire (EQ5D), which consists of 5 items and a visual analog scale (VAS). EQ5D index values were estimated from the EQ5D items using the time tradeoff approach based on Canadian norms. Tobit regression and quantile regression models were used to evaluate the adjusted effect of tenecteplase versus alteplase treatment on the EQ5D index values and VAS score, respectively. The association between return to prebaseline stroke functioning and the modified Rankin Scale score 0 to 1 and HRQOL was quantified using correlation coefficient (r) with 95% CI. RESULTS: Of 1577 included in the intention-to-treat analysis patients, 1503 (95.3%) had complete data on the EQ5D. Of this, 769 (51.2%) were administered tenecteplase and 717 (47.7%) were female. The mean EQ5D VAS score and EQ5D index values were not significantly higher for those who received intravenous tenecteplase compared with those who received intravenous alteplase (P=0.10). Older age (P<0.01), more severe stroke assessed using the National Institutes of Health Stroke Scale (P<0.01), and longer stroke onset-to-needle time (P=0.004) were associated with lower EQ5D index and VAS scores. There was a strong association (r, 0.85 [95% CI, 0.81-0.89]) between patient-reported return to prebaseline functioning and modified Rankin Scale score 0 to 1 Similarly, there was a moderate association between return to prebaseline functioning and EQ5D index (r, 0.45 [95% CI, 0.40-0.49]) and EQ5D VAS scores (r, 0.42 [95% CI, 0.37-0.46]). CONCLUSIONS: Although there is no differential effect of thrombolysis type on patient-reported global HRQOL and EQ 5D-5L index values in patients with acute stroke, sex- and age-related differences in HRQOL were noted in this study. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03889249.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Activador de Tejido Plasminógeno , Tenecteplasa/efectos adversos , Fibrinolíticos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Calidad de Vida , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/inducido químicamente , Canadá , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/inducido químicamente , Terapia Trombolítica , Resultado del TratamientoRESUMEN
The construction of quaternary carbon centers via C-C coupling protocols remains challenging. The coupling of tertiary C(sp3) with secondary or tertiary C(sp3) counterparts has been hindered by pronounced steric clashes and many side reactions. Herein, we have successfully developed a type of bisphosphine ligand iron complex-catalyzed coupling reactions of tertiary alkyl halides with secondary alkyl zinc reagents and efficiently realized the coupling reaction between tertiary C(sp3) and secondary C(sp3) with high selectivity for the initial instance, which provided an efficient method for the construction of quaternary carbon centers with high steric hindrance. The combination of an iron catalyst and directing group of the substrate makes the great challenging transformation possible.
RESUMEN
While Ru-catalyzed hydrogenolysis holds significant promise in converting waste polyolefins into value-added alkane fuels, a major constraint is the high cost of noble metal catalysts. In this work, we propose, for the first time, that Co-based catalysts derived from CoAl-layered double hydroxide (LDH) are alternatives for efficient polyolefin hydrogenolysis. Leveraging the chemical flexibility of the LDH platform, we reveal that metallic Co species serve as highly efficient active sites for polyolefin hydrogenolysis. Furthermore, we introduced Ni into the Co framework to tackle the issue of restricted hydrogenation ability associated with contiguous Co-Co sites. In-situ analysis indicates that the integration of Ni induces electron transfer and facilitates hydrogen spillover. This dual effect synergistically enhances the hydrogenation/desorption of olefin intermediates, resulting in a significant reduction in the yield of low-value CH4 from 27.1 to 12.6%. Through leveraging the unique properties of LDH, we have developed efficient and cost-effective catalysts for the sustainable recycling and valorization of waste polyolefin materials.
RESUMEN
The present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous. Here, we have constructed stable Ru0-Ruδ+ complex species, even under reaction conditions, through surface ligand engineering of commercially available Ru/C catalysts. Our findings unequivocally demonstrate that surface-ligated Ru species can be stabilized in the form of a Ruδ+ state, which, in turn, engenders a perturbation of the σ bond electron distribution within the polyolefin carbon chain, ultimately boosting the rate-determining step of C-C scission. The optimized catalysts reach a solid conversion rate of 609 g·gRu-1·h-1 for polyethylene. This achievement represents a 4.18-fold enhancement relative to the pristine Ru/C catalyst while concurrently preserving a remarkable 94% selectivity toward valued liquid alkanes. Of utmost significance, this surface ligand engineering can be extended to the gentle mixing of catalysts in ligand solution at room temperature, thus rendering it amenable for swift integration into industrial processes involving polyolefin degradation.
RESUMEN
Among persons born in China before 1980 and tested for vaccinia virus Tiantan strain (VVT), 28.7% (137/478) had neutralizing antibodies, 71.4% (25/35) had memory B-cell responses, and 65.7% (23/35) had memory T-cell responses to VVT. Because of cross-immunity between the viruses, these findings can help guide mpox vaccination strategies in China.
Asunto(s)
Mpox , Viruela , Humanos , Viruela/prevención & control , Vacunación , Anticuerpos Neutralizantes , China/epidemiología , Virus VacciniaRESUMEN
Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.
Asunto(s)
Mieloma Múltiple , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Peroxidación de Lípido , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológicoRESUMEN
Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.
Asunto(s)
Neoplasias , Receptores Purinérgicos P2X7 , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Receptores Purinérgicos P2X7/metabolismo , AnimalesRESUMEN
BACKGROUND: Spiraea L. is a genus comprising approximately 90 species that are distributed throughout the northern temperate regions. China is recognized as the center of species diversity for this genus, hosting more than 70 species, including 47 endemic species. While Spiraea is well-known for its ornamental value, its taxonomic and phylogenetic studies have been insufficient. RESULTS: In this study, we conducted sequencing and assembly of the plastid genomes (plastomes) of 34 Asiatic Spiraea accessions (representing 27 Asiatic Spiraea species) from China and neighboring regions. The Spiraea plastid genome exhibits typical quadripartite structures and encodes 113-114 genes, including 78-79 protein-coding genes (PCGs), 30 tRNA genes, and 4 rRNA genes. Linear regression analysis revealed a significant correlation between genome size and the length of the SC region. By the sliding windows method, we identified several hypervariable hotspots within the Spiraea plastome, all of which were localized in the SC regions. Our phylogenomic analysis successfully established a robust phylogenetic framework for Spiraea, but it did not support the current defined section boundaries. Additionally, we discovered that the genus underwent diversification after the Early Oligocene (~ 30 Ma), followed by a rapid speciation process during the Pliocene and Pleistocene periods. CONCLUSIONS: The plastomes of Spiraea provided us invaluable insights into its phylogenetic relationships and evolutionary history. In conjunction with plastome data, further investigations utilizing other genomes, such as the nuclear genome, are urgently needed to enhance our understanding of the evolutionary history of this genus.
Asunto(s)
Genoma del Cloroplasto , Genoma de Plastidios , Rosaceae , Spiraea , Filogenia , Evolución Molecular , Genoma del Cloroplasto/genéticaRESUMEN
Regulation of chromatin structure and accessibility determines the transcription activities of genes, which endows the host with function-specific patterns of gene expression. Upon viral infection, the innate immune responses provide the first line of defense, allowing rapid production of variegated antiviral cytokines. Knowledge on how chromatin accessibility is regulated during host defense against viral infection remains limited. Our previous work found that the nuclear matrix protein SAFA surveilled viral RNA and regulated antiviral immune genes expression. However, how SAFA regulates the specific induction of antiviral immune genes remains unknown. Here, through integration of RNA-seq, ATAC-seq and ChIP-seq assays, we found that the depletion of SAFA specifically decreased the chromatin accessibility, activation and expression of virus induced genes. And mutation assays suggested that the RNA-binding ability of SAFA was essential for its function in regulating antiviral chromatin accessibility. RIP-seq results showed that SAFA exclusively bound with antiviral related RNAs following viral infection. Further, we combined the CRISPR-Cas13d mediated RNA knockdown system with ATAC-qPCR, and demonstrated that the binding between SAFA and according antiviral RNAs specifically mediated the openness of the corresponding chromatin and following robust transcription of antiviral genes. Moreover, knockdown of these associated RNAs dampened the accessibility of related genes in an extranuclear signaling pathway dependent manner. Interestingly, VSV infection cleaved SAFA protein at the C-terminus which deprived its RNA binding ability for immune evasion. Thus, our results demonstrated that SAFA and the interacting RNA products collaborated and remodeled chromatin accessibility to facilitate antiviral innate immune responses.
Asunto(s)
Antivirales , Virosis , Cromatina/genética , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata/genética , ARN ViralRESUMEN
In this paper, we propose a novel and simple multi-channel broadband optical chaos generation scheme based on phase modulation and chirped fiber Bragg grating (CFBG). Firstly, phase modulation is introduced to generate more new frequency components to broaden the spectrum of the phase chaos. Meanwhile, the accumulated dispersion from CFBG distorts the intensity chaos, converts phase chaos to intensity chaos, and weakens the laser relaxation oscillation. This process would lead to energy redistribution in the power spectrum, effectively increasing the chaotic bandwidth. Then, the wavelength detuning between CFBG and the semiconductor laser is introduced to enhance the chaotic bandwidth further. The experiment results show that the 10â dB bandwidths of the five channels are up to 31.0 GHz, 34.3 GHz, 36.3 GHz, 40 GHz, and 40 GHz, respectively. Note that the maximum bandwidth of the PD in our experiment is limited to 40â GHz. In addition, the multi-channel chaotic signals obtained from the experiment system are used to generate multi-channel physical random numbers. After the post-processing operations, the total rate of five parallel high-speed physical random number generation channels is 4.64 Tbit/s (160 GSa/s × 5bit × 1 channel + 160 GSa/s × 6bit × 4 channels). As far as we know, this is the highest record of using external cavity feedback semiconductor lasers to generate random numbers, which has great potential to meet the security requirements of next-generation Tbit/s optical communication systems.
RESUMEN
This study aims to explore the impact and underlying mechanism of sulforaphane (SFN) intervention on the migration and invasion of lung adenocarcinoma induced by 7, 8-dihydroxy-9, 10-epoxy-benzo (a) pyrene (BPDE). Human lung adenocarcinoma A549 cells were exposed to varying concentrations of BPDE (0.25, 0.50, and 1.00 µM) and subsequently treated with 5 µM SFN. Cell viability was determined using CCK8 assay, while migration and invasion were assessed using Transwell assays. Lentivirus transfection was employed to establish NLRP12 overexpressing A549 cells. ELISA was utilized to quantify IL-33, CXCL12, and CXCL13 levels in the supernatant, while quantitative real-time PCR (qRT-PCR) and Western Blot were used to analyze the expression of NLRP12 and key factors associated with canonical and non-canonical NF-κB pathways. Results indicated an increase in migratory and invasive capabilities, concurrent with heightened expression of IL-33, CXCL12, CXCL13, and factors associated with both canonical and non-canonical NF-κB pathways. Moreover, mRNA and protein levels of NLRP12 were decreased in BPDE-stimulated A549 cells. Subsequent SFN intervention attenuated BPDE-induced migration and invasion of A549 cells. Lentivirus-mediated NLRP12 overexpression not only reversed the observed phenotype in BPDE-induced cells but also led to a reduction in the expression of critical factors associated with both canonical and non-canonical NF-κB pathways. Collectively, we found that SFN could inhibit BPDE-induced migration and invasion of A549 cells by upregulating NLRP12, thereby influencing both canonical and non-canonical NF-κB pathways.
Asunto(s)
Adenocarcinoma del Pulmón , Movimiento Celular , Isotiocianatos , Neoplasias Pulmonares , Invasividad Neoplásica , Sulfóxidos , Humanos , Isotiocianatos/farmacología , Sulfóxidos/farmacología , Movimiento Celular/efectos de los fármacos , Células A549 , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/toxicidad , Anticarcinógenos/farmacología , FN-kappa B/metabolismo , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacosRESUMEN
BACKGROUND: To analyze the clinical characteristics and outcomes of children with severe neurological symptoms associated with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection during the Omicron pandemic in China. METHODS: This study used a questionnaire to obtain data from pediatric intensive care unit (PICU) centers in seven tertiary hospitals in Northeast China from December 1, 2022, to January 31, 2023. RESULTS: A total of 255 patients were confirmed to have SARS-CoV-2 infection, and 45 patients (17.65 %) were included in this study. Of these, seven (15.6%) patients died, and the median time from admission to death was 35 h (IQR, 14-120 h). Twenty (52.6%) survivors experienced neurological sequelae. Patients with platelet counts lower than 100 × 109/L had a higher incidence of complications such as multiple organ dysfunction, mechanical ventilation rate, and mortality. Cranial magnetic resonance imaging (MRI) always reveals cerebral tissue edema, with some severe lesions forming a softening site. CONCLUSION: Children infected with SARS-CoV-2 often exhibit severe neurological symptoms, and in some cases, they may rapidly develop malignant cerebral edema or herniation, leading to a fatal outcome. An early decrease in platelet count may associated with an unfavorable prognosis. IMPACT: Since early December 2022, China has gradually adjusted its prevention and control policy of SARS-CoV-2; Omicron outbreaks have occurred in some areas for a relatively short period. Due to the differences in ethnicity, endemic strains and vaccination status, there was a little difference from what has been reported about children with SARS-CoV-2 infection with severe neurological symptoms in abroad. This is the first multicenter clinical study in children with nervous system involvement after acute SARS-CoV-2 infection in China, and helpful for pediatricians to have a more comprehensive understanding of the clinical symptoms and prognosis of such disease.
Asunto(s)
Edema Encefálico , COVID-19 , Niño , Humanos , SARS-CoV-2 , Pandemias , China/epidemiología , Estudios RetrospectivosRESUMEN
OBJECTIVES: Serum uric acid (SUA) is associated with poor outcomes in patients with numerous types of disease. However, the association between SUA and the outcomes of patients with rheumatoid arthritis (RA) remains to be fully elucidated. Thus, the present study aimed to determine the associations between SUA and all-cause or cardiovascular disease (CVD)-associated mortality in adults with RA. METHODS: The data of patients with RA were collected from the National Health and Nutrition Examination Survey from 2001 to 2018. All-cause and CVD-associated mortality were identified using national death records through 31 December 2019. Weighted survival curves, Cox proportional hazards regression models, restricted cubic splines (RCS) and stratified analyses were used to assess the association between SUA levels and mortality. RESULTS: Among 2,312 patients with RA, a total of 597 all-cause deaths and 198 CVD-associated deaths were recorded during 19,133 person-years of follow-up. The results of the Kaplan-Meier curves for long-term all-cause and CVD-associated mortality demonstrated that increased levels of SUA were associated with a higher incidence of mortality. In the fully adjusted models, the highest SUA quartile exhibited hazard ratios [(HRs); 95% confidence intervals (CIs)] of 1.53 (1.10, 2.14) for all-cause mortality and 1.93 (1.14, 3.27) for CVD-associated mortality, compared with the lowest SUA quartile. The results of the RCS analysis confirmed a strong linear association between SUA levels and the HR of all-cause mortality, while a U-shaped association was observed between SUA and CVD-associated mortality. CONCLUSIONS: The results of the present study demonstrated that high SUA levels were significantly associated with increased risks of all-cause and CVD-associated mortality in patients with RA. Further studies are required to elucidate the potential impact of treatments on reducing SUA levels.
Asunto(s)
Artritis Reumatoide , Enfermedades Cardiovasculares , Adulto , Humanos , Estudios de Cohortes , Ácido Úrico , Encuestas Nutricionales , Factores de Riesgo , Enfermedades Cardiovasculares/diagnóstico , Artritis Reumatoide/diagnósticoRESUMEN
BACKGROUND AND AIM: The latest Barcelona Clinic Liver Cancer (BCLC) staging system suggests considering surgery in patients with resectable BCLC stage 0/A hepatocellular carcinoma (HCC) and clinically significant portal hypertension (CSPH). This study aimed to evaluate the safety and short- and long-term outcomes of laparoscopic hepatectomy for BCLC stage 0/A HCC patients with CSPH. METHODS: We retrospectively reviewed the medical records of 647 HCC patients in BCLC stage 0/A who were treated at five centers between January 2010 and January 2019. Among these patients, 434 underwent laparoscopic hepatectomy, and 213 underwent open hepatectomy. We used Kaplan-Meier analysis to compare the overall survival (OS) rate and recurrence-free survival (RFS) rate between patients with and without CSPH before and after propensity score matching (PSM). Multivariate Cox regression analysis was performed to identify prognostic factors for BCLC stage 0/A patients, and subgroup analyses were also conducted. RESULTS: Among the 434 patients who underwent laparoscopic hepatectomy, 186 had CSPH and 248 did not. The Kaplan-Meier analysis showed that the OS and RFS rates were significantly worse in the CSPH group before and after PSM. Multivariate Cox regression analyses identified CSPH as a prognostic factor for poor OS and RFS after laparoscopic hepatectomy. However, CSPH patients treated laparoscopically had a better short- and long-term prognosis than those treated with open surgery. CONCLUSIONS: CSPH has a negative impact on the prognosis of BCLC stage 0/A HCC patients after laparoscopic hepatectomy. Laparoscopic hepatectomy is still recommended for treatment, but careful patient selection is essential.