Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(13): e2213584120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943879

RESUMEN

Virtually all living cells are encased in glycans. They perform key cellular functions such as immunomodulation and cell-cell recognition. Yet, how their composition and configuration affect their functions remains enigmatic. Here, we constructed isogenic capsule-switch mutants harboring 84 types of capsular polysaccharides (CPSs) in Streptococcus pneumoniae. This collection enables us to systematically measure the affinity of structurally related CPSs to primary human nasal and bronchial epithelial cells. Contrary to the paradigm, the surface charge does not appreciably affect epithelial cell binding. Factors that affect adhesion to respiratory cells include the number of rhamnose residues and the presence of human-like glycomotifs in CPS. Besides, pneumococcal colonization stimulated the production of interleukin 6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractantprotein-1 (MCP-1) in nasal epithelial cells, which also appears to be dependent on the serotype. Together, our results reveal glycomotifs of surface polysaccharides that are likely to be important for colonization and survival in the human airway.


Asunto(s)
Células Epiteliales , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Sistema Respiratorio , Polisacáridos/metabolismo , Nariz
2.
Hepatology ; 77(3): 774-788, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35908246

RESUMEN

BACKGROUND AND AIMS: The sensitivity of current surveillance methods for detecting early-stage hepatocellular carcinoma (HCC) is suboptimal. Extracellular vesicles (EVs) are promising circulating biomarkers for early cancer detection. In this study, we aim to develop an HCC EV-based surface protein assay for early detection of HCC. APPROACH AND RESULTS: Tissue microarray was used to evaluate four potential HCC-associated protein markers. An HCC EV surface protein assay, composed of covalent chemistry-mediated HCC EV purification and real-time immuno-polymerase chain reaction readouts, was developed and optimized for quantifying subpopulations of EVs. An HCC EV ECG score, calculated from the readouts of three HCC EV subpopulations ( E pCAM + CD63 + , C D147 + CD63 + , and G PC3 + CD63 + HCC EVs), was established for detecting early-stage HCC. A phase 2 biomarker study was conducted to evaluate the performance of ECG score in a training cohort ( n  = 106) and an independent validation cohort ( n  = 72).Overall, 99.7% of tissue microarray stained positive for at least one of the four HCC-associated protein markers (EpCAM, CD147, GPC3, and ASGPR1) that were subsequently validated in HCC EVs. In the training cohort, HCC EV ECG score demonstrated an area under the receiver operating curve (AUROC) of 0.95 (95% confidence interval [CI], 0.90-0.99) for distinguishing early-stage HCC from cirrhosis with a sensitivity of 91% and a specificity of 90%. The AUROCs of the HCC EV ECG score remained excellent in the validation cohort (0.93; 95% CI, 0.87-0.99) and in the subgroups by etiology (viral: 0.95; 95% CI, 0.90-1.00; nonviral: 0.94; 95% CI, 0.88-0.99). CONCLUSION: HCC EV ECG score demonstrated great potential for detecting early-stage HCC. It could augment current surveillance methods and improve patients' outcomes.


Asunto(s)
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Biomarcadores de Tumor/análisis , Vesículas Extracelulares/química , Proteínas de la Membrana , Electrocardiografía , Glipicanos
3.
Liver Transpl ; 28(2): 200-214, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34664394

RESUMEN

Numerous studies in hepatocellular carcinoma (HCC) have proposed tissue-based gene signatures for individualized prognostic assessments. Here, we develop a novel circulating tumor cell (CTC)-based transcriptomic profiling assay to translate tissue-based messenger RNA (mRNA) signatures into a liquid biopsy setting for noninvasive HCC prognostication. The HCC-CTC mRNA scoring system combines the NanoVelcro CTC Assay for enriching HCC CTCs and the NanoString nCounter platform for quantifying the HCC-CTC Risk Score (RS) panel in enriched HCC CTCs. The prognostic role of the HCC-CTC RS was assessed in The Cancer Genome Atlas (TCGA) HCC cohort (n = 362) and validated in an independent clinical CTC cohort (n = 40). The HCC-CTC RS panel was developed through our integrated data analysis framework of 8 HCC tissue-based gene signatures and identified the top 10 prognostic genes (discoidin domain receptor tyrosine kinase 1 [DDR1], enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase [EHHADH], androgen receptor [AR], lumican [LUM], hydroxysteroid 17-beta dehydrogenase 6[HSD17B6], prostate transmembrane protein, androgen induced 1 [PMEPA1], tsukushi, small leucine rich proteoglycan [TSKU], N-terminal EF-hand calcium binding protein 2 [NECAB2], ladinin 1 [LAD1], solute carrier family 27 member 5 [SLC27A5]) highly expressed in HCC with low expressions in white blood cells. The panel accurately discriminated overall survival in TCGA HCC cohort (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.4-2.9). The combined use of the scoring system and HCC-CTC RS panel successfully distinguished artificial blood samples spiked with an aggressive HCC cell type, SNU-387, from those spiked with PLC/PRF/5 cells (P = 0.02). In the CTC validation cohort (n = 40), HCC-CTC RS remained an independent predictor of survival (HR, 5.7; 95% CI, 1.5-21.3; P = 0.009) after controlling for Model for End-Stage Liver Disease score, Barcelona Clinic Liver Cancer stage, and CTC enumeration count. Our study demonstrates a novel interdisciplinary approach to translate tissue-based gene signatures into a liquid biopsy setting. This noninvasive approach will allow real-time disease profiling and dynamic prognostication of HCC.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad Hepática en Estado Terminal , Neoplasias Hepáticas , Trasplante de Hígado , Células Neoplásicas Circulantes , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Células Neoplásicas Circulantes/metabolismo , Pronóstico , ARN Mensajero/genética , Índice de Severidad de la Enfermedad
4.
Small ; 17(28): e2100546, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34105245

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) is an efficient and precise gene-editing technology that offers a versatile solution for establishing treatments directed at genetic diseases. Currently, CRISPR/Cas9 delivery into cells relies primarily on viral vectors, which suffer from limitations in packaging capacity and safety concerns. These issues with a nonviral delivery strategy are addressed, where Cas9•sgRNA ribonucleoprotein (RNP) complexes can be encapsulated into supramolecular nanoparticles (SMNP) to form RNP⊂SMNPs, which can then be delivered into targeted cells via supramolecular nanosubstrate-mediated delivery. Utilizing the U87 glioblastoma cell line as a model system, a variety of parameters for cellular-uptake of the RNP-laden nanoparticles are examined. Dose- and time-dependent CRISPR/Cas9-mediated gene disruption is further examined in a green fluorescent protein (GFP)-expressing U87 cell line (GFP-U87). The utility of an optimized SMNP formulation in co-delivering Cas9 protein and two sgRNAs that target deletion of exons 45-55 (708 kb) of the dystrophin gene is demonstrated. Mutations in this region lead to Duchenne muscular dystrophy, a severe genetic muscle wasting disease. Efficient delivery of these gene deletion cargoes is observed in a human cardiomyocyte cell line (AC16), induced pluripotent stem cells, and mesenchymal stem cells.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteína 9 Asociada a CRISPR , Edición Génica , Vectores Genéticos , Humanos
5.
Adv Funct Mater ; 30(49)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34220409

RESUMEN

Tumor-derived extracellular vesicles (EVs) play essential roles in intercellular communication during tumor growth and metastatic evolution. Currently, little is known about the possible roles of tumor-derived EVs in sarcoma because the lack of specific surface markers makes it technically challenging to purify sarcoma-derived EVs. In this study, a specific purification system is developed for Ewing sarcoma (ES)-derived EVs by coupling covalent chemistry-mediated EV capture/ release within a nanostructure-embedded microchip. The purification platform-ES-EV Click Chip-takes advantage of specific anti-LINGO-1 recognition and sensitive click chemistry-mediated EV capture, followed by disulfide cleavage-driven EV release. Since the device is capable of specific and efficient purification of intact ES EVs with high purity, ES-EV Click Chip is ideal for conducting downstream functional studies of ES EVs. Absolute quantification of the molecular hallmark of ES (i.e., EWS rearrangements) using reverse transcription Droplet Digital PCR enables specific quantification of ES EVs. The purified ES EVs can be internalized by recipient cells and transfer their mRNA cargoes, exhibiting their biological intactness and potential role as biological shuttles in intercellular communication.

6.
Front Neurol ; 15: 1411960, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966085

RESUMEN

Purpose: Postural Orthostatic Tachycardia Syndrome (POTS) is a heterogenous disorder of the autonomic nervous system that is often disabling. There are no FDA-approved therapies for the treatment of this condition. While some patients recover with baseline non-pharmacological intervention, others require repeated trials of off-label pharmacological therapies. The reasoning for this variable treatment response is unknown. The purpose of this work is to identify potential factors that are associated with higher odds of starting pharmacotherapy and/or a higher rate of POTS treatment changes. Methods: Chart review of demographic, disease and treatment descriptions, medical history, and tilt table examinations of 322 POTS patients who were diagnosed between 2018 and 2020 at our tertiary care center was completed. We first identified the most significant factors associated with an increased odds of starting pharmacotherapy using variable selection techniques and logistic regression. We then identified the most significant factors associated with changes in POTS treatment strategies using variable selection techniques and negative binomial regression modeling. A significance level of 0.05 was utilized. Results: A total of 752 POTS-specific treatment courses were cataloged, and 429 treatment changes were observed. The most cited reason for a change in management was uncontrolled symptoms. History of migraine headaches, reported fatigue, reported palpitations and a previous POTS diagnosis at an outside institution were found to be associated with a higher odds of starting pharmacotherapy for POTS symptoms (Odds Ratio of 2.40, 1.94, 2.62, 2.08, respectively). History of migraine headaches, reported fatigue, and higher heart rate differences on tilt table examination were found to be associated with an increase in the rate of POTS treatment changes (44, 66, 13% increase in incidence rate, respectively), while reported neck pain was associated with a decrease (27% decrease in incidence rate). Conclusion: Our work identifies important areas of focus in the development of high-quality trials involving both the non-pharmacological and pharmacological treatment of POTS and highlights several characteristics of patients that may be more refractory to both baseline non-pharmacological treatments and current pharmacological treatment strategies.

7.
Front Neurol ; 15: 1297964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585346

RESUMEN

Background: The impact of COVID-19 has been far-reaching, and the field of neurology is no exception. Due to the long-hauler effect, a variety of chronic health consequences have occurred for some post-COVID patients. A subset of these long-hauler patients experienced symptoms of autonomic dysfunction and tested positive for postural orthostatic tachycardia syndrome (POTS) via autonomic testing. Methods: We conducted a chart review of a convenience sample from patients seen by neurologists at our tertiary care center for suspicion of post-COVID POTS. Patients included in our study had clearly defined POTS based on clinical criteria and positive tilt table test, were 81.25% female, and had an average age of approximately 36. Out of 16 patients, 12 had a confirmed positive COVID test result, with the remaining 4 having strong clinical suspicion for COVID infection. Our analysis examined the most bothersome 3 symptoms affecting each patient per the neurologist's note at their initial visit for post-COVID POTS, clinical presentation, comorbidities, neurological exam findings, autonomic testing results, and COMPASS-31 autonomic questionnaire and PROMIS fatigue survey results. Results: Palpitations (68.75%) and fatigue (62.5%) were the most common of the impactful symptoms reported by patients in their initial Cleveland Clinic neurology visit. The most frequent comorbidities in our sample were chronic migraines (37.5%), irritable bowel syndrome (IBS) (18.75%), and Raynaud's (18.75%). Neurological exam findings and autonomic testing results other than tilt table yielded variable findings without clear trends. Survey results showed substantial autonomic symptom burden (COMPASS-31 autonomic questionnaire average score 44.45) and high levels of fatigue (PROMIS fatigue survey average score 64.64) in post-COVID POTS patients. Conclusion: Our sample of post-COVID POTS patients are similar to the diagnosed POTS general population including in comorbidities and autonomic testing. Fatigue was identified by patients as a common and debilitating symptom. We hope that our study will be an early step toward further investigation of post-COVID POTS with focus on the trends identified in this chart review.

8.
J Pathol Inform ; 15: 100357, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38420608

RESUMEN

Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath. For updated information on this survey review paper and accessing to the original model cards repository, please refer to GitHub. Updated version of this draft can also be found from arXiv.

9.
J Funct Biomater ; 14(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37103308

RESUMEN

Cultivated meat is a fast-growing research field and an industry with great potential to overcome the limitations of traditional meat production. Cultivated meat utilizes cell culture and tissue engineering technologies to culture a vast number of cells in vitro and grow/assemble them into structures mimicking the muscle tissues of livestock animals. Stem cells with self-renewal and lineage-specific differentiation abilities have been considered one of the key cell sources for cultivated meats. However, the extensive in vitro culturing/expansion of stem cells results in a reduction in their abilities to proliferate and differentiate. Extracellular matrix (ECM) has been used as a culturing substrate to support cell expansion for cell-based therapies in regenerative medicine due to its resemblance to the native microenvironment of cells. In this study, the effect of the ECM on the expansion of bovine umbilical cord stromal cells (BUSC) in vitro was evaluated and characterized. BUSCs with multi-lineage differentiation potentials were isolated from bovine placental tissue. Decellularized ECM prepared from a confluent monolayer of bovine fibroblasts (BF) is free of cellular components but contains major ECM proteins such as fibronectin and type I collagen and ECM-associated growth factors. Expansion of BUSC on ECM for three passages (around three weeks) resulted in about 500-fold amplification, while cells were amplified less than 10-fold when cultured on standard tissue culture plates (TCP). Moreover, the presence of ECM reduced the requirement for serum in the culture medium. Importantly, the cells amplified on ECM retained their differentiation abilities better than cells cultured on TCP. The results of our study support the notion that monolayer cell-derived ECM may be a strategy to expand bovine cells in vitro effectively and efficiently.

10.
Nano Today ; 492023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037608

RESUMEN

It is well-established that the combined use of nanostructured substrates and immunoaffinity agents can enhance the cell-capture performance of the substrates, thus offering a practical solution to effectively capture circulating tumor cells (CTCs) in peripheral blood. Developing along this strategy, this study first demonstrated a top-down approach for the fabrication of tetrahedral DNA nanostructure (TDN)-NanoGold substrates through the hierarchical integration of three functional constituents at various length-scales: a macroscale glass slide, sub-microscale self-organized NanoGold, and nanoscale self-assembled TDN. The TDN-NanoGold substrates were then assembled with microfluidic chaotic mixers to give TDN-NanoGold Click Chips. In conjunction with the use of copper (Cu)-catalyzed azide-alkyne cycloaddition (CuAAC)-mediated CTC capture and restriction enzyme-triggered CTC release, TDN-NanoGold Click Chips allow for effective enumeration and purification of CTCs with intact cell morphologies and preserved molecular integrity. To evaluate the clinical utility of TDN-NanoGold Click Chips, we used these devices to isolate and purify CTCs from patients with human papillomavirus (HPV)-positive (+) head and neck squamous cell carcinoma (HNSCC). The purified HPV(+) HNSCC CTCs were then subjected to RT-ddPCR testing, allowing for detection of E6/E7 oncogenes, the characteristic molecular signatures of HPV(+) HNSCC. We found that the resulting HPV(+) HNSCC CTC counts and E6/E7 transcript copy numbers are correlated with the treatment responses in the patients, suggesting the potential clinical utility of TDN-NanoGold Click Chips for non-invasive diagnostic applications of HPV(+) HNSCC.

11.
Nano Today ; 482023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36711067

RESUMEN

Optimizing outcomes in prostate cancer (PCa) requires precision in characterization of disease status. This effort was directed at developing a PCa extracellular vesicle (EV) Digital Scoring Assay (DSA) for detecting metastasis and monitoring progression of PCa. PCa EV DSA is comprised of an EV purification device (i.e., EV Click Chip) and reverse-transcription droplet digital PCR that quantifies 11 PCa-relevant mRNA in purified PCa-derived EVs. A Met score was computed for each plasma sample based on the expression of the 11-gene panel using the weighted Z score method. Under optimized conditions, the EV Click Chips outperformed the ultracentrifugation or precipitation method of purifying PCa-derived EVs from artificial plasma samples. Using PCa EV DSA, the Met score distinguished metastatic (n = 20) from localized PCa (n = 20) with an area under the receiver operating characteristic curve of 0.88 (95% CI:0.78-0.98). Furthermore, longitudinal analysis of three PCa patients showed the dynamics of the Met scores reflected clinical behavior even when disease was undetectable by imaging. Overall, a sensitive PCa EV DSA was developed to identify metastatic PCa and reveal dynamic disease states noninvasively. This assay may complement current imaging tools and blood-based tests for timely detection of metastatic progression that can improve care for PCa patients.

12.
Cureus ; 14(11): e31021, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36349067

RESUMEN

PURPOSE: No formal diagnostic criteria exist for the neuropathic subtype of postural orthostatic tachycardia syndrome (POTS). Skin biopsy and quantitative sudomotor axon reflex testing (QSORT) are preferred methods of assessment for autonomic small fiber neuropathy (SFN). This study characterizes the utility of these testing methods at a tertiary center and identifies clinical features associated with abnormal testing. METHODS: Medical records of 2658 patients undergoing tilt table testing at a single institution between June 2018 and December 2020 were reviewed. Patients with postural orthostatic tachycardia syndrome were included for analysis of intraepidermal nerve fiber density (IENFD), sweat output, comorbidities, symptoms, measures of cardiovascular autonomic function, and serum antibody levels. RESULTS: 356 patients (90% female, mean age 31 ± 10) met the diagnostic criteria for postural orthostatic tachycardia syndrome. Of 211 patients who underwent quantitative sudomotor axon reflex testing, 70 (33%) demonstrated reduced sweat output. These patients were more likely to demonstrate sympathetic impairment during the Valsalva maneuver. Of 80 patients who underwent skin biopsies, 19 (24%) demonstrated reduced intraepidermal nerve fiber density. These patients tended to be older and have reduced heart rate variability during deep breathing. Neither test was associated with specific serum antibodies, symptoms, or comorbidities, though there was a trend toward higher rates of comorbid autoimmune disease in patients with abnormal testing. CONCLUSION: A subset of patients with postural orthostatic tachycardia syndrome have evidence of small fiber neuropathy. These patients tend to have impaired cardiovascular autonomic function but are otherwise similar to patients with no evidence of small fiber neuropathy.

13.
Front Microbiol ; 13: 844447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401477

RESUMEN

The ongoing SARS-CoV-2 pandemic has tested the capabilities of public health and scientific community. Since the dawn of the twenty-first century, viruses have caused several outbreaks, with coronaviruses being responsible for 2: SARS-CoV in 2007 and MERS-CoV in 2013. As the border between wildlife and the urban population continue to shrink, it is highly likely that zoonotic viruses may emerge more frequently. Furthermore, it has been shown repeatedly that these viruses are able to efficiently evade the innate immune system through various strategies. The strong and abundant antiviral innate immunity evasion strategies shown by SARS-CoV-2 has laid out shortcomings in our approach to quickly identify and modulate these mechanisms. It is thus imperative that there be a systematic framework for the study of the immune evasion strategies of these viruses, to guide development of therapeutics and curtail transmission. In this review, we first provide a brief overview of general viral evasion strategies against the innate immune system. Then, we utilize SARS-CoV-2 as a case study to highlight the methods used to identify the mechanisms of innate immune evasion, and pinpoint the shortcomings in the current paradigm with its focus on overexpression and protein-protein interactions. Finally, we provide a recommendation for future work to unravel viral innate immune evasion strategies and suitable methods to aid in the study of virus-host interactions. The insights provided from this review may then be applied to other viruses with outbreak potential to remain ahead in the arms race against viral diseases.

14.
J Med Chem ; 65(20): 13681-13691, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36257066

RESUMEN

Fatty acid synthase (FASN), a sole cytosolic enzyme responsible for de-novo lipid synthesis, is overexpressed in cancer but not in normal non-lipogenic tissues. FASN has been targeted, albeit no such inhibitor has been approved. Proton pump inhibitors (PPIs), approved for digestive disorders, were found to inhibit FASN with anticancer activities in attempting to repurpose Food and Drug Administration-approved drugs. Indeed, PPI usage benefited breast cancer patients and increased their response rate. Due to structural similarity, we thought that their metabolites might extend anticancer effects of PPIs by inhibiting FASN. Here, we tested this hypothesis and found that 5-hydroxy lansoprazole sulfide (5HLS), the end lansoprazole metabolite, was more active than lansoprazole in inhibiting FASN function and regulation of NHEJ repair of oxidative DNA damage via PARP1. Surprisingly, 5HLS inhibits the enoyl reductase, whereas lansoprazole inhibits the thioesterase of FASN. Thus, PPI metabolites may contribute to the lasting anticancer effects of PPIs by inhibiting FASN.


Asunto(s)
Inhibidores de la Bomba de Protones , Neoplasias de la Mama Triple Negativas , Humanos , Lansoprazol/farmacología , Lansoprazol/uso terapéutico , Inhibidores de la Bomba de Protones/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Oxidorreductasas , Ácido Graso Sintasas/metabolismo , Sulfuros/farmacología , Lípidos
15.
Brachytherapy ; 21(1): 85-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34656435

RESUMEN

PURPOSE/OBJECTIVE(S): To determine if patients with unfavorable intermediate-risk (UIR), high-risk (HR), or very high-risk (VHR) prostate cancer (PCa) treated with 125I interstitial brachytherapy benefit from androgen deprivation therapy (ADT). MATERIALS/METHODS: We reviewed our institutional database of patients with UIR, HR, or VHR PCa, per 2018 NCCN risk classification, treated with definitive 125I interstitial brachytherapy with or without ADT from 1998-2017. Outcomes including biochemical failure (bF), distant metastases (DM), and overall survival (OS) were analyzed with the Kaplan-Meier method and Cox proportional hazards regression. PCa-specific mortality (PCSM) was analyzed with Fine-Gray competing-risk regression. RESULTS: Of 1033 patients, 262 (25%) received ADT and 771 (75%) did not. Median ADT duration was 6 months. By risk group, 764 (74%) patients were UIR, 219 (21%) HR, and 50 (5%) VHR. ADT was more frequently given to HR (50%) and VHR (56%) patients compared to UIR (16%; p<0.001), to older patients (p<0.001), corresponding with increasing PSA (p<0.001) and Grade Group (p<0.001). Median follow-up was 4.9 years (0.3-17.6 years). On multivariable analysis accounting for risk group, age, and year of treatment, ADT was not associated with bF, DM, PCSM, or OS (p≥0.05 each). CONCLUSION: Among patients with UIR, HR, and VHR PCa, the addition of ADT to 125I interstitial brachytherapy was not associated with improved outcomes, and no subgroup demonstrated benefit. Our findings do not support the use of ADT in combination with 125I interstitial brachytherapy. Prospective studies are required to elucidate the role of ADT for patients with UIR, HR, and VHR PCa treated with prostate brachytherapy.


Asunto(s)
Braquiterapia , Neoplasias de la Próstata , Antagonistas de Andrógenos/uso terapéutico , Andrógenos , Braquiterapia/métodos , Humanos , Radioisótopos de Yodo , Masculino , Antígeno Prostático Específico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Estudios Retrospectivos
16.
Adv Sci (Weinh) ; 9(14): e2105853, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35486030

RESUMEN

Well-preserved molecular cargo in circulating extracellular vesicles (EVs) offers an ideal material for detecting oncogenic gene alterations in cancer patients, providing a noninvasive diagnostic solution for detection of disease status and monitoring treatment response. Therefore, technologies that conveniently isolate EVs with sufficient efficiency are desperately needed. Here, a lipid labeling and click chemistry-based EV capture platform ("Click Beads"), which is ideal for EV message ribonucleic acid (mRNA) assays due to its efficient, convenient, and rapid purification of EVs, enabling downstream molecular quantification using reverse transcription digital polymerase chain reaction (RT-dPCR) is described and demonstrated. Ewing sarcoma protein (EWS) gene rearrangements and kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutation status are detected and quantified using EVs isolated by Click Beads and matched with those identified in biopsy specimens from Ewing sarcoma or pancreatic cancer patients. Moreover, the quantification of gene alterations can be used for monitoring treatment responses and disease progression.


Asunto(s)
Vesículas Extracelulares , Sarcoma de Ewing , Carcinogénesis/genética , Química Clic , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Genes ras , Humanos , Lípidos , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo
17.
Biosens Bioelectron ; 199: 113854, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896918

RESUMEN

Circulating tumor cell (CTC) clusters are present in cancer patients with severe metastasis, resulting in poor clinical outcomes. However, CTC clusters have not been studied as extensively as single CTCs, and the clinical utility of CTC clusters remains largely unknown. In this study, we aim sought to explore the feasibility of NanoVelcro Chips to simultaneously detect both single CTCs and CTC clusters with negligible perturbation to their intrinsic properties in neuroendocrine tumors (NETs). We discovered frequent CTC clusters in patients with advanced NETs and examined their potential roles, together with single NET CTCs, as novel biomarkers of patient response following peptide receptor radionuclide therapy (PRRT). We observed dynamic changes in both total NET CTCs and NET CTC cluster counts in NET patients undergoing PRRT which correlated with clinical outcome. These preliminary findings suggest that CTC clusters, along with single CTCs, offer a potential non-invasive option to monitor the treatment response in NET patients undergoing PRRT.


Asunto(s)
Técnicas Biosensibles , Células Neoplásicas Circulantes , Tumores Neuroendocrinos , Biomarcadores de Tumor , Humanos , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/patología
18.
mBio ; 13(1): e0343621, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35038898

RESUMEN

The dynamics of SARS-CoV-2 infection in COVID-19 patients are highly variable, with a subset of patients demonstrating prolonged virus shedding, which poses a significant challenge for disease management and transmission control. In this study, the long-term dynamics of SARS-CoV-2 infection were investigated using a human well-differentiated nasal epithelial cell (NEC) model of infection. NECs were observed to release SARS-CoV-2 virus onto the apical surface for up to 28 days postinfection (dpi), further corroborated by viral antigen staining. Single-cell transcriptome sequencing (sc-seq) was utilized to explore the host response from infected NECs after short-term (3-dpi) and long-term (28-dpi) infection. We identified a unique population of cells harboring high viral loads present at both 3 and 28 dpi, characterized by expression of cell stress-related genes DDIT3 and ATF3 and enriched for genes involved in tumor necrosis factor alpha (TNF-α) signaling and apoptosis. Remarkably, this sc-seq analysis revealed an antiviral gene signature within all NEC cell types even at 28 dpi. We demonstrate increased replication of basal cells, absence of widespread cell death within the epithelial monolayer, and the ability of SARS-CoV-2 to replicate despite a continuous interferon response as factors likely contributing to SARS-CoV-2 persistence. This study provides a model system for development of therapeutics aimed at improving viral clearance in immunocompromised patients and implies a crucial role for immune cells in mediating viral clearance from infected epithelia. IMPORTANCE Increasing medical attention has been drawn to the persistence of symptoms (long-COVID syndrome) or live virus shedding from subsets of COVID-19 patients weeks to months after the initial onset of symptoms. In vitro approaches to model viral or symptom persistence are needed to fully dissect the complex and likely varied mechanisms underlying these clinical observations. We show that in vitro differentiated human NECs are persistently infected with SARS-CoV-2 for up to 28 dpi. This viral replication occurred despite the presence of an antiviral gene signature across all NEC cell types even at 28 dpi. This indicates that epithelial cell intrinsic antiviral responses are insufficient for the clearance of SARS-CoV-2, implying an essential role for tissue-resident and infiltrating immune cells for eventual viral clearance from infected airway tissue in COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Células Epiteliales , Antivirales
19.
J Vis Exp ; (168)2021 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-33720120

RESUMEN

The early interactions between the nasal epithelial layer and the innate immune cells during viral infections remains an under-explored area. The significance of innate immunity signaling in viral infections has increased substantially as patients with respiratory infections who exhibit high innate T cell activation show a better disease outcome. Hence, dissecting these early innate immune interactions allows the elucidation of the processes that govern them and may facilitate the development of potential therapeutic targets and strategies for dampening or even preventing early progression of viral infections. This protocol details a versatile model that can be used to study early crosstalk, interactions, and activation of innate immune cells from factors secreted by virally infected airway epithelial cells. Using an H3N2 influenza virus (A/Aichi/2/1968) as the representative virus model, innate cell activation of co-cultured peripheral blood mononuclear cells (PBMCs) has been analyzed using flow cytometry to investigate the subsets of cells that are activated by the soluble factors released from the epithelium in response to the viral infection. The results demonstrate the gating strategy for differentiating the subsets of cells and reveal the clear differences between the activated populations of PBMCs and their crosstalk with the control and infected epithelium. The activated subsets can then be further analyzed to determine their functions as well as molecular changes specific to the cells. Findings from such a crosstalk investigation may uncover factors that are important for the activation of vital innate cell populations, which are beneficial in controlling and suppressing the progression of viral infection. Furthermore, these factors can be universally applied to different viral diseases, especially to newly emerging viruses, to dampen the impact of such viruses when they first circulate in naïve human populations.


Asunto(s)
Inmunidad Innata , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Modelos Biológicos , Células 3T3 , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Impedancia Eléctrica , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Nutrientes/citología , Humanos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/virología , Ratones , Mitomicina/farmacología , Mucina 5AC/metabolismo , Mucosa Nasal/patología , Tubulina (Proteína)/metabolismo
20.
Nat Commun ; 12(1): 4408, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344888

RESUMEN

Placenta accreta spectrum (PAS) is a high-risk obstetrical condition associated with significant morbidity and mortality. Current clinical screening modalities for PAS are not always conclusive. Here, we report a nanostructure-embedded microchip that efficiently enriches both single and clustered circulating trophoblasts (cTBs) from maternal blood for detecting PAS. We discover a uniquely high prevalence of cTB-clusters in PAS and subsequently optimize the device to preserve the intactness of these clusters. Our feasibility study on the enumeration of cTBs and cTB-clusters from 168 pregnant women demonstrates excellent diagnostic performance for distinguishing PAS from non-PAS. A logistic regression model is constructed using a training cohort and then cross-validated and tested using an independent cohort. The combined cTB assay achieves an Area Under ROC Curve of 0.942 (throughout gestation) and 0.924 (early gestation) for distinguishing PAS from non-PAS. Our assay holds the potential to improve current diagnostic modalities for the early detection of PAS.


Asunto(s)
Pruebas de Detección del Suero Materno/métodos , Placenta Accreta/diagnóstico , Trofoblastos/patología , Adulto , Biomarcadores/sangre , Agregación Celular , Estudios de Cohortes , Diagnóstico Diferencial , Femenino , Humanos , Dispositivos Laboratorio en un Chip , Pruebas de Detección del Suero Materno/instrumentación , Persona de Mediana Edad , Nanoestructuras , Placenta Accreta/sangre , Placenta Previa/sangre , Placenta Previa/diagnóstico , Embarazo , Curva ROC , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA