Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 299(5): 104633, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963496

RESUMEN

The area postrema (AP) of the brain is exposed to circulating metabolites and hormones. However, whether AP detects glucose changes to exert biological responses remains unknown. Its neighboring nuclei, the nucleus tractus solitarius (NTS), responds to acute glucose infusion by inhibiting hepatic glucose production, but the mechanism also remains elusive. Herein, we characterized AP and NTS glucose-sensing mechanisms. Infusion of glucose into the AP, like the NTS, of chow rats suppressed glucose production during the pancreatic (basal insulin)-euglycemic clamps. Glucose transporter 1 or pyruvate kinase lentiviral-mediated knockdown in the AP negated AP glucose infusion to lower glucose production, while the glucoregulatory effect of NTS glucose infusion was also negated by knocking down glucose transporter 1 or pyruvate kinase in the NTS. Furthermore, we determined that high-fat (HF) feeding disrupts glucose infusion to lower glucose production in association with a modest reduction in the expression of glucose transporter 1, but not pyruvate kinase, in the AP and NTS. However, pyruvate dehydrogenase activator dichloroacetate infusion into the AP or NTS that enhanced downstream pyruvate metabolism and recapitulated the glucoregulatory effect of glucose in chow rats still failed to lower glucose production in HF rats. We discovered that a glucose transporter 1- and pyruvate kinase-dependent glucose-sensing mechanism in the AP (as well as the NTS) lowers glucose production in chow rats and that HF disrupts the glucose-sensing mechanism that is downstream of pyruvate metabolism in the AP and NTS. These findings highlight the role of AP and NTS in mediating glucose to regulate hepatic glucose production.


Asunto(s)
Área Postrema , Transportador de Glucosa de Tipo 1 , Glucosa , Piruvato Quinasa , Animales , Ratas , Área Postrema/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Núcleo Solitario/metabolismo , Piruvato Quinasa/metabolismo , Técnicas de Silenciamiento del Gen , Lentivirus/metabolismo , Ácido Pirúvico/metabolismo , Masculino , Dieta Alta en Grasa
2.
Chemphyschem ; : e202300961, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850107

RESUMEN

Efficient nitrogen (N2) fixation and activation under mild conditions are crucial for modern society. External electric fields (Felectric) can significantly affect N2 activation. In this work, the effect of Felectric on N2 activation by Nb3 clusters supported in a sumanene bowl was studied by density functional theory calculations. Four typical systems at different stages of N-N activation were studied, including two intermediates and two transition states. The impact of Felectric on various properties related to N2 activation was investigated, including the N-N bond length, overlap population density of states (OPDOS), total energy of the system, adsorption energy of N2, decomposition of energy changes, and electron transfer. The sumanene not only functions as a support and protective substrate, but also serves as a donor or acceptor under different Felectric conditions. Negative Felectric is beneficial to N-N bond activation because it promotes electron transfer to the N-N region and improves the d-π* orbital hybridization between metals and N2 in the activation process. Positive Felectric improves d-π* orbital hybridization only when the N-N is nearly dissociated. The microscopic mechanism of Felectric's effects provides insight into N2 activation and theoretical guidance for the design of catalytic reaction conditions for nitrogen reduction reactions (NRR).

3.
Gut ; 72(3): 460-471, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36008102

RESUMEN

OBJECTIVE: Bariatric surgery is an effective treatment for type 2 diabetes (T2D) that changes gut microbial composition. We determined whether the gut microbiota in humans after restrictive or malabsorptive bariatric surgery was sufficient to lower blood glucose. DESIGN: Women with obesity and T2D had biliopancreatic diversion with duodenal switch (BPD-DS) or laparoscopic sleeve gastrectomy (LSG). Faecal samples from the same patient before and after each surgery were used to colonise rodents, and determinants of blood glucose control were assessed. RESULTS: Glucose tolerance was improved in germ-free mice orally colonised for 7 weeks with human microbiota after either BPD-DS or LSG, whereas food intake, fat mass, insulin resistance, secretion and clearance were unchanged. Mice colonised with microbiota post-BPD-DS had lower villus height/width and crypt depth in the distal jejunum and lower intestinal glucose absorption. Inhibition of sodium-glucose cotransporter (Sglt)1 abrogated microbiota-transmissible improvements in blood glucose control in mice. In specific pathogen-free (SPF) rats, intrajejunal colonisation for 4 weeks with microbiota post-BPD-DS was sufficient to improve blood glucose control, which was negated after intrajejunal Sglt-1 inhibition. Higher Parabacteroides and lower Blautia coincided with improvements in blood glucose control after colonisation with human bacteria post-BPD-DS and LSG. CONCLUSION: Exposure of rodents to human gut microbiota after restrictive or malabsorptive bariatric surgery improves glycaemic control. The gut microbiota after bariatric surgery is a standalone factor that alters upper gut intestinal morphology and lowers Sglt1-mediated intestinal glucose absorption, which improves blood glucose control independently from changes in obesity, insulin or insulin resistance.


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistencia a la Insulina , Obesidad Mórbida , Humanos , Femenino , Ratas , Ratones , Animales , Glucosa , Diabetes Mellitus Tipo 2/cirugía , Obesidad/cirugía , Gastrectomía , Obesidad Mórbida/cirugía
4.
Gut ; 70(9): 1675-1683, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33087489

RESUMEN

OBJECTIVE: Conjugated bile acids are metabolised by upper small intestinal microbiota, and serum levels of taurine-conjugated bile acids are elevated and correlated with insulin resistance in people with type 2 diabetes. However, whether changes in taurine-conjugated bile acids are necessary for small intestinal microbiome to alter insulin action remain unknown. DESIGN: We evaluated circulating and specifically brain insulin action using the pancreatic-euglycaemic clamps in high-fat (HF) versus chow fed rats with or without upper small intestinal healthy microbiome transplant. Chemical and molecular gain/loss-of-function experiments targeting specific taurine-conjugated bile acid-induced changes of farnesoid X receptor (FXR) in the brain were performed in parallel. RESULTS: We found that short-term HF feeding increased the levels of taurochenodeoxycholic acid (TCDCA, an FXR ligand) in the upper small intestine, ileum, plasma and dorsal vagal complex (DVC) of the brain. Transplantation of upper small intestinal healthy microbiome into the upper small intestine of HF rats not only reversed the rise of TCDCA in all reported tissues but also enhanced the ability of either circulating hyperinsulinaemia or DVC insulin action to lower glucose production. Further, DVC infusion of TCDCA or FXR agonist negated the enhancement of insulin action, while genetic knockdown or chemical inhibition of FXR in the DVC of HF rats reversed insulin resistance. CONCLUSION: Our findings indicate that FXR in the DVC is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats, and highlight a previously unappreciated TCDCA-FXR axis linking gut microbiome and host insulin action.


Asunto(s)
Tronco Encefálico/fisiología , Microbioma Gastrointestinal/fisiología , Resistencia a la Insulina , Intestino Delgado/microbiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Ácido Tauroquenodesoxicólico/metabolismo , Animales , Encéfalo/metabolismo , Química Encefálica , Tronco Encefálico/metabolismo , Dieta Alta en Grasa , Trasplante de Microbiota Fecal , Técnicas de Silenciamiento del Gen , Técnica de Clampeo de la Glucosa , Resistencia a la Insulina/fisiología , Intestino Delgado/metabolismo , Ratas , Receptores Citoplasmáticos y Nucleares/análisis , Ácido Tauroquenodesoxicólico/análisis
5.
J Biol Chem ; 291(45): 23390-23402, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27621315

RESUMEN

Adrenomedullin 2 (ADM2) is an endogenous bioactive peptide belonging to the calcitonin gene-related peptide family. Our previous studies showed that overexpression of ADM2 in mice reduced obesity and insulin resistance by increasing thermogenesis in brown adipose tissue. However, the effects of ADM2 in another type of thermogenic adipocyte, beige adipocytes, remain to be understood. The plasma ADM2 levels were inversely correlated with obesity in humans, and adipo-ADM2-transgenic (tg) mice displayed resistance to high-fat diet-induced obesity with increased energy expenditure. Beiging of subcutaneous white adipose tissues (WAT) was more noticeably induced in high-fat diet-fed transgenic mice with adipocyte-ADM2 overexpression (adipo-ADM2-tg mice) than in WT animals. ADM2 treatment in primary rat subcutaneous adipocytes induced beiging with up-regulation of UCP1 and beiging-related marker genes and increased mitochondrial uncoupling respiration, which was mainly mediated by activation of the calcitonin receptor-like receptor (CRLR)·receptor activity-modifying protein 1 (RAMP1) complex and PKA and p38 MAPK signaling pathways. Importantly, this adipocyte-autonomous beiging effect by ADM2 was translatable to human primary adipocytes. In addition, M2 macrophage activation also contributed to the beiging effects of ADM2 through catecholamine secretion. Therefore, our study reveals that ADM2 enhances subcutaneous WAT beiging via a direct effect by activating the CRLR·RAMP1-cAMP/PKA and p38 MAPK pathways in white adipocytes and via an indirect effect by stimulating alternative M2 polarization in macrophages. Through both mechanisms, beiging of WAT by ADM2 results in increased energy expenditure and reduced obesity, suggesting ADM2 as a novel anti-obesity target.


Asunto(s)
Tejido Adiposo Pardo/inmunología , Tejido Adiposo Blanco/inmunología , Activación de Macrófagos , Macrófagos/inmunología , Neuropéptidos/inmunología , Obesidad/inmunología , Hormonas Peptídicas/inmunología , Adipocitos Blancos/inmunología , Adipocitos Blancos/patología , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/patología , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Femenino , Regulación de la Expresión Génica , Humanos , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuropéptidos/genética , Obesidad/etiología , Obesidad/genética , Obesidad/patología , Hormonas Peptídicas/genética , Ratas Sprague-Dawley , Transducción de Señal , Termogénesis , Regulación hacia Arriba
6.
Acta Pharmacol Sin ; 38(12): 1601-1610, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28933423

RESUMEN

Hyperhomocysteinemia (HHcy) is a key risk factor in hepatic steatosis. In this study, we applied a metabolomic approach to investigate the changes in the metabolite profile due to HHcy-induced hepatic steatosis and the effects of omega-3 PUFA (polyunsaturated fatty acid) supplementation in mice. HHcy was induced in mice by giving DL-Hcy (1.8 g/L) in drinking water for 6 weeks, then the mice were sacrificed, and the metabolic profiles of the liver and plasma were analyzed through UPLC-ESI-QTOFMS-based lipidomics. Hepatic triglycerides and cholesterol were further assayed. The expression of ceramide metabolism-related genes was measured by quantitative PCR. Compared with control mice, HHcy mice exhibited hepatic steatosis with a notable increase in ceramide-related metabolites and subsequent upregulation of ceramide synthesis genes such as Sptlc3, Degs2, Cer4 and Smpd4. Omega-3 PUFA was simultaneously administered in HHcy mice through chow diet containing 3.3% omega-3 PUFA supplement for 6 weeks, which significantly ameliorated Hcy-induced hepatic steatosis. The decrease in hepatic lipid accumulation was mainly due to reduced hepatic levels of ceramides, which was partly the result of the lower expression of ceramide synthesis genes, Sptlc3 and Degs2. Similar beneficial effects of DHA were observed in Hcy-stimulated primary hepatocytes in vitro. In summary, Hcy-induced ceramide elevation in hepatocytes might contribute to the development of hepatic steatosis. Furthermore, downregulation of ceramide levels through omega-3 PUFA supplementation ameliorates hepatic lipid accumulation. Thus, ceramide is a potential therapeutic target for the treatment of hepatic steatosis.


Asunto(s)
Ceramidas/biosíntesis , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hepatocitos/efectos de los fármacos , Hiperhomocisteinemia/complicaciones , Animales , Células Cultivadas , Hepatocitos/metabolismo , Ratones , Ratones Endogámicos C57BL
7.
Mediators Inflamm ; 2017: 9029327, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29386753

RESUMEN

Hypoxia-inducible factor (HIF) 1α is a metabolic regulator that plays an important role in immunologic responses. Previous studies have demonstrated that HIF1α participates in the M1 polarization of macrophages. To clarify the mechanism of HIF1α-induced polarization of M1 macrophage, myeloid-specific HIF1α overexpression (Lysm HIF1α lsl) mice were employed and the bone marrow-derived and peritoneal macrophages were isolated. RT-PCR results revealed that HIF1α overexpression macrophage had a hyperinflammatory state characterized by the upregulation of M1 markers. Cellular bioenergetics analysis showed lower cellular oxygen consumption rates in the Lysm HIF1α lsl mice. Metabolomics studies showed that HIF1α overexpression led to increased glycolysis and pentose phosphate pathway intermediates. Further results revealed that macrophage M1 polarization, induced by HIF1α overexpression, was via upregulating the mRNA expression of the genes related to the glycolysis metabolism. Our results indicate that HIF1α promoted macrophage glycolysis metabolism, which induced M1 polarization in mice.


Asunto(s)
Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Inflamación/etiología , Activación de Macrófagos , Macrófagos/metabolismo , Animales , Polaridad Celular , Ratones , Ratones Endogámicos C57BL , Vía de Pentosa Fosfato
8.
Kidney Int ; 88(4): 711-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26061549

RESUMEN

Vascular calcification (VC) is a major risk factor for cardiovascular mortality in chronic renal failure (CRF) patients, but the pathogenesis remains partially unknown and effective therapeutic targets should be urgently explored. Here we pursued the therapeutic role of rapamycin in CRF-related VC. Mammalian target of rapamycin (mTOR) signal was activated in the aortic wall of CRF rats. As expected, oral rapamycin administration significantly reduced VC by inhibiting mTOR in rats with CRF. Further in vitro results showed that activation of mTOR by both pharmacological agent and genetic method promoted, while inhibition of mTOR reduced, inorganic phosphate-induced vascular smooth muscle cell (VSMC) calcification and chondrogenic/osteogenic gene expression, which were independent of autophagy and apoptosis. Interestingly, the expression of Klotho, an antiaging gene that suppresses VC, was reduced in calcified vasculature, whereas rapamycin reversed membrane and secreted Klotho decline through mTOR inhibition. When mTOR signaling was enhanced by either mTOR overexpression or deletion of tuberous sclerosis 1, Klotho mRNA was further decreased in phosphate-treated VSMCs, suggesting a vital association between mTOR signaling and Klotho expression. More importantly, rapamycin failed to reduce VC in the absence of Klotho by using either siRNA knockdown of Klotho or Klotho knockout mice. Thus, Klotho has a critical role in mediating the observed decrease in calcification by rapamycin in vitro and in vivo.


Asunto(s)
Aorta Abdominal/efectos de los fármacos , Aorta Torácica/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Glucuronidasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Calcificación Vascular/prevención & control , Animales , Aorta Abdominal/enzimología , Aorta Abdominal/patología , Aorta Torácica/enzimología , Aorta Torácica/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Glucuronidasa/deficiencia , Glucuronidasa/genética , Humanos , Fallo Renal Crónico/tratamiento farmacológico , Fallo Renal Crónico/enzimología , Fallo Renal Crónico/patología , Proteínas Klotho , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Osteogénesis/efectos de los fármacos , Fenotipo , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Transfección , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Calcificación Vascular/enzimología , Calcificación Vascular/genética , Calcificación Vascular/patología
9.
Diabetes ; 73(3): 426-433, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064571

RESUMEN

GDF15 regulates energy balance and glucose homeostasis in rodents by activating its receptor GFRAL, expressed in the area postrema of the brain. However, whether GDF15-GFRAL signaling in the area postrema regulates glucose tolerance independent of changes in food intake and weight and contributes to the glucose-lowering effect of metformin remain unknown. Herein, we report that direct, acute GDF15 infusion into the area postrema of rats fed a high-fat diet increased intravenous glucose tolerance and insulin sensitivity to lower hepatic glucose production independent of changes in food intake, weight, and plasma insulin levels under conscious, unrestrained, and nonstressed conditions. In parallel, metformin infusion concurrently increased plasma GDF15 levels and glucose tolerance. Finally, a knockdown of GFRAL expression in the area postrema negated administration of GDF15, as well as metformin, to increase glucose tolerance independent of changes in food intake, weight, and plasma insulin levels. In summary, activation of GFRAL in the area postrema contributes to glucose regulation of GDF15 and metformin in vivo.


Asunto(s)
Insulinas , Metformina , Ratas , Animales , Área Postrema/metabolismo , Glucosa/metabolismo , Metformina/farmacología , Encéfalo , Insulinas/metabolismo
10.
Nat Metab ; 6(1): 39-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38167726

RESUMEN

Proteins activate small intestinal calcium sensing receptor (CaSR) and/or peptide transporter 1 (PepT1) to increase hormone secretion1-8, but the effect of small intestinal protein sensing and the mechanistic potential of CaSR and/or PepT1 in feeding and glucose regulation remain inconclusive. Here we show that, in male rats, CaSR in the upper small intestine is required for casein infusion to increase glucose tolerance and GLP1 and GIP secretion, which was also dependent on PepT1 (ref. 9). PepT1, but not CaSR, is required for casein infusion to lower feeding. Upper small intestine casein sensing fails to regulate feeding, but not glucose tolerance, in high-fat-fed rats with decreased PepT1 but increased CaSR expression. In the ileum, a CaSR-dependent but PepT1-independent pathway is required for casein infusion to lower feeding and increase glucose tolerance in chow-fed rats, in parallel with increased PYY and GLP1 release, respectively. High fat decreases ileal CaSR expression and disrupts casein sensing on feeding but not on glucose control, suggesting an ileal CaSR-independent, glucose-regulatory pathway. In summary, we discover small intestinal CaSR- and PepT1-dependent and -independent protein sensing mechanisms that regulate gut hormone release, feeding and glucose tolerance. Our findings highlight the potential of targeting small intestinal CaSR and/or PepT1 to regulate feeding and glucose tolerance.


Asunto(s)
Hormonas Gastrointestinales , Receptores Sensibles al Calcio , Animales , Masculino , Ratas , Caseínas/metabolismo , Hormonas Gastrointestinales/metabolismo , Glucosa/metabolismo , Intestino Delgado/metabolismo , Receptores Sensibles al Calcio/metabolismo
11.
Sheng Li Ke Xue Jin Zhan ; 44(5): 339-44, 2013 Oct.
Artículo en Zh | MEDLINE | ID: mdl-24475720

RESUMEN

ER stress is defined as an imbalance between protein synthesis and protein folding capacity, resulting in the accumulation of misfolded or unfolded protein in ER. Temperate ER stress through UPR enhances the folding capacity of ER and restores the ER homeostasis, exerting a cell protection role. While prolonged ER stress lead to inflammation, cell dysfunction and apoptosis, which takes part in the progression of insulin resistance and atherosclerosis. In the condition of obesity or hyperhomocysteinemia, ER stress in adipose tissue, hypothalamus, liver and other tissue or organs causes the dysregulation of adipokines secretion as well as abnormal receptor or post-receptor signal transduction, which plays an significant role in cardiometabolic disease.


Asunto(s)
Adipoquinas/fisiología , Estrés del Retículo Endoplásmico , Tejido Adiposo/fisiopatología , Animales , Apoptosis , Aterosclerosis , Homeostasis , Humanos , Hiperhomocisteinemia , Hipotálamo/fisiopatología , Inflamación , Resistencia a la Insulina , Hígado/fisiopatología , Obesidad , Biosíntesis de Proteínas , Pliegue de Proteína , Transducción de Señal
12.
Cell Metab ; 35(5): 875-886.e5, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37060902

RESUMEN

Metformin, the most widely prescribed medication for obesity-associated type 2 diabetes (T2D), lowers plasma glucose levels, food intake, and body weight in rodents and humans, but the mechanistic site(s) of action remain elusive. Metformin increases plasma growth/differentiation factor 15 (GDF15) levels to regulate energy balance, while GDF15 administration activates GDNF family receptor α-like (GFRAL) that is highly expressed in the area postrema (AP) and the nucleus of the solitary tract (NTS) of the hindbrain to lower food intake and body weight. However, the tissue-specific contribution of plasma GDF15 levels after metformin treatment is still under debate. Here, we found that metformin increased plasma GDF15 levels in high-fat (HF) fed male rats through the upregulation of GDF15 synthesis in the kidney. Importantly, the kidney-specific knockdown of GDF15 expression as well as the AP-specific knockdown of GFRAL expression negated the ability of metformin to lower food intake and body weight gain. Taken together, we unveil the kidney as a target of metformin to regulate energy homeostasis through a kidney GDF15-dependent AP axis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Masculino , Ratas , Animales , Metformina/farmacología , Área Postrema/metabolismo , Pérdida de Peso , Diabetes Mellitus Tipo 2/metabolismo , Peso Corporal/fisiología , Ingestión de Alimentos , Riñón/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo
13.
Acta Pharm Sin B ; 12(4): 1899-1912, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35847503

RESUMEN

Atherosclerosis is a chronic multifactorial cardiovascular disease. Western diets have been reported to affect atherosclerosis through regulating adipose function. In high cholesterol diet-fed ApoE -/- mice, adipocyte HIF-1α deficiency or direct inhibition of HIF-1α by the selective pharmacological HIF-1α inhibitor PX-478 alleviates high cholesterol diet-induced atherosclerosis by reducing adipose ceramide generation, which lowers cholesterol levels and reduces inflammatory responses, resulting in improved dyslipidemia and atherogenesis. Smpd3, the gene encoding neutral sphingomyelinase, is identified as a new target gene directly regulated by HIF-1α that is involved in ceramide generation. Injection of lentivirus-SMPD3 in epididymal adipose tissue reverses the decrease in ceramides in adipocytes and eliminates the improvements on atherosclerosis in the adipocyte HIF-1α-deficient mice. Therefore, HIF-1α inhibition may constitute a novel approach to slow atherosclerotic progression.

14.
Mol Metab ; 44: 101132, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33264656

RESUMEN

OBJECTIVE: The mechanism of nutrient sensing in the upper small intestine (USI) and ileum that regulates glucose homeostasis remains elusive. Short-term high-fat (HF) feeding increases taurochenodeoxycholic acid (TCDCA; an agonist of farnesoid X receptor (FXR)) in the USI and ileum of rats, and the increase of TCDCA is prevented by transplantation of microbiota obtained from the USI of healthy donors into the USI of HF rats. However, whether changes of TCDCA-FXR axis in the USI and ileum alter nutrient sensing remains unknown. METHODS: Intravenous glucose tolerance test was performed in rats that received USI or ileal infusion of nutrients (i.e., oleic acids or glucose) via catheters placed toward the lumen of USI and/or ileum, while mechanistic gain- and loss-of-function studies targeting the TCDCA-FXR axis or bile salt hydrolase activity in USI and ileum were performed. RESULTS: USI or ileum infusion of nutrients increased glucose tolerance in healthy but not HF rats. Transplantation of healthy microbiome obtained from USI into the USI of HF rats restored nutrient sensing and inhibited FXR via a reduction of TCDCA in the USI and ileum. Further, inhibition of USI and ileal FXR enhanced nutrient sensing in HF rats, while inhibiting USI (but not ileal) bile salt hydrolase of HF rats transplanted with healthy microbiome activated FXR and disrupted nutrient sensing in the USI and ileum. CONCLUSIONS: We reveal a TCDCA-FXR axis in both the USI and ileum that is necessary for the upper small intestinal microbiome to govern local nutrient-sensing glucoregulatory pathways in rats.


Asunto(s)
Intestino Delgado/metabolismo , Nutrientes , Ácido Tauroquenodesoxicólico/metabolismo , Animales , Ácidos y Sales Biliares , Microbioma Gastrointestinal , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis , Íleon/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
15.
iScience ; 24(4): 102366, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33870148

RESUMEN

Hypothalamic regulation of lipid and glucose homeostasis is emerging, but whether the dorsal vagal complex (DVC) senses nutrients and regulates hepatic nutrient metabolism remains unclear. Here, we found in rats DVC oleic acid infusion suppressed hepatic secretion of triglyceride-rich very-low-density lipoprotein (VLDL-TG), which was disrupted by inhibiting DVC long-chain fatty acyl-CoA synthetase that in parallel disturbed lipid homeostasis during intravenous lipid infusion. DVC glucose infusion elevated local glucose levels similarly as intravenous glucose infusion and suppressed hepatic glucose production. This was independent of lactate metabolism as inhibiting lactate dehydrogenase failed to disrupt glucose sensing and neither could DVC lactate infusion recapitulate glucose effect. DVC oleic acid and glucose infusion failed to lower VLDL-TG secretion and glucose production in high-fat fed rats, while inhibiting DVC farnesoid X receptor enhanced oleic acid but not glucose sensing. Thus, an impairment of DVC nutrient sensing may lead to the disruption of lipid and glucose homeostasis in metabolic syndrome.

16.
Mol Metab ; 39: 101011, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32416314

RESUMEN

BACKGROUND: In response to energy abundant or deprived conditions, nutrients and hormones activate hypothalamic pathways to maintain energy and glucose homeostasis. The underlying CNS mechanisms, however, remain elusive in rodents and humans. SCOPE OF REVIEW: Here, we first discuss brain glucose sensing mechanisms in the presence of a rise or fall of plasma glucose levels, and highlight defects in hypothalamic glucose sensing disrupt in vivo glucose homeostasis in high-fat fed, obese, and/or diabetic conditions. Second, we discuss brain leptin signalling pathways that impact glucose homeostasis in glucose-deprived and excessed conditions, and propose that leptin enhances hypothalamic glucose sensing and restores glucose homeostasis in short-term high-fat fed and/or uncontrolled diabetic conditions. MAJOR CONCLUSIONS: In conclusion, we believe basic studies that investigate the interaction of glucose sensing and leptin action in the brain will address the translational impact of hypothalamic glucose sensing in diabetes and obesity.


Asunto(s)
Encéfalo/fisiología , Glucosa/metabolismo , Leptina/metabolismo , Transducción de Señal , Animales , Susceptibilidad a Enfermedades , Metabolismo Energético , Homeostasis , Humanos , Insulina/metabolismo , Neuronas/metabolismo
17.
Cell Cycle ; 18(16): 1882-1892, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31208278

RESUMEN

Long non-coding RNAs (lncRNAs) have been confirmed to be aberrantly expressed and involved in the progression of neuroblastoma. This study aimed to explore the expression profile of lncRNA X-inactive specific transcript (XIST) and its functional involvement in neuroblastoma. In this study, the relative level of XIST in neuroblastoma tissues and cell lines was detected by qPCR, and DKK1 protein expression was determined using western blot. The effect of XIST on cell growth, invasion and migration in vitro and in tumorigenesis of neuroblastoma was assessed. The level of H3K27me3 in DKK1 promoter was analyzed with ChIP-qPCR. Interaction between XIST and EZH2 was verified by RNA immunoprecipitation (RIP) and RNA pull-down assay. XIST was significantly upregulated in neuroblastoma tissues (n = 30) and cells lines, and it was statistically associated with the age and International Neuroblastoma Staging System (INSS) staging in neuroblastoma patients. Downregulation of XIST suppressed the growth, migration and invasion of neuroblastoma cells. EZH2 inhibited DKK1 expression through inducing H3 histone methylation in its promoter. XIST increased the level of H3K27me3 in DKK1 promoter via interacting with EZH2. Downregulation of XIST increased DKK1 expression to suppress neuroblastoma cell growth, invasion, and migration, which markedly restrained the tumor progression. In conclusion, XIST downregulated DKK1 by inducing H3 histone methylation via EZH2, thereby facilitating the growth, migration and invasion of neuroblastoma cells and retarding tumor progression.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , ARN Largo no Codificante/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Xenoinjertos , Humanos , Masculino , Metilación , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , Transfección , Regulación hacia Arriba/genética
18.
Cell Metab ; 30(5): 937-951.e5, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31668872

RESUMEN

Obesity-induced adipose dysfunction is a major contributor to atherosclerosis. Cold exposure has been reported to affect atherosclerosis through regulation of adipose function, but the mechanism has not been well clarified. Here, adipocyte hypoxia-inducible factor 2α (HIF-2α) was upregulated after mild cold exposure at 16°C and mediated cold-induced thermogenesis. Adipocyte HIF-2α deficiency exacerbated Western-diet-induced atherosclerosis by increasing adipose ceramide levels, which blunted hepatocyte cholesterol elimination and thermogenesis. Mechanistically, Acer2, the gene encoding alkaline ceramidase 2, was identified as a novel target gene of HIF-2α, triggering ceramide catabolism. Adipose overexpression of ACER2 rescued adipocyte HIF-2α-deficiency-induced exacerbation of atherosclerosis. Furthermore, activation of adipose HIF-2α by the HIF prolyl hydroxylase inhibitor FG-4592 had protective effects on atherosclerosis, accompanied by a reduction in adipose and plasma ceramide and plasma cholesterol levels. This study highlights adipocyte HIF-2α as a putative drug target against atherosclerosis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Aterosclerosis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ceramidas/metabolismo , Ceramidasa Alcalina/genética , Ceramidasa Alcalina/metabolismo , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Colesterol/metabolismo , Frío , Dieta Occidental/efectos adversos , Técnicas de Inactivación de Genes , Glicina/análogos & derivados , Glicina/farmacología , Glicina/uso terapéutico , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Transducción de Señal/efectos de los fármacos , Termogénesis , Regulación hacia Arriba/genética
19.
Nat Commun ; 10(1): 714, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755615

RESUMEN

Glucose homeostasis is partly controlled by the energy sensor mechanistic target of rapamycin (mTOR) in the muscle and liver. However, whether mTOR in the small intestine affects glucose homeostasis in vivo remains unknown. Here, we first report that delivery of rapamycin or an adenovirus encoding the dominant negative acting mTOR-mutated protein into the upper small intestine is sufficient to inhibit small intestinal mTOR signaling and lower glucose production in rodents with high fat diet-induced insulin resistance. Second, we found that molecular activation of small intestinal mTOR blunts the glucose-lowering effect of the oral anti-diabetic agent metformin, while inhibiting small intestinal mTOR alone lowers plasma glucose levels by inhibiting glucose production in rodents with diabetes as well. Thus, these findings illustrate that inhibiting upper small intestinal mTOR is sufficient and necessary to lower glucose production and enhance glucose homeostasis, and thereby unveil a previously unappreciated glucose-lowering effect of small intestinal mTOR.


Asunto(s)
Glucemia/metabolismo , Glucosa/biosíntesis , Intestino Delgado/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Adenoviridae/genética , Animales , Dieta Alta en Grasa , Homeostasis , Resistencia a la Insulina , Intestino Delgado/efectos de los fármacos , Masculino , Metformina/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
20.
Br J Pharmacol ; 175(8): 1230-1240, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28407200

RESUMEN

Adrenomedullin (ADM) 2/intermedin (IMD) is a short peptide that belongs to the CGRP superfamily. Although it shares receptors with CGRP, ADM and amylin, ADM2 has significant and unique functions in the cardiovascular system. In the past decade, the cardiovascular effect of ADM2 has been carefully analysed. In this review, progress in understanding the effects of ADM2 on the cardiovascular system and its protective role in cardiometabolic diseases are summarized. LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Metabólicas/tratamiento farmacológico , Hormonas Peptídicas/uso terapéutico , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos , Enfermedades Metabólicas/metabolismo , Hormonas Peptídicas/farmacología , Receptores de Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA