Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046770

RESUMEN

The histone H3K27 demethylase KDM6A is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling. Most importantly, KDM6A binds and activates NLRC5 and CIITA encoding regulators of Major Histocompatibility Complex (MHC) genes. Patient data indicate that NLRC5 and CIITA, are downregulated in MM with low KDM6A expression. Chromatin analysis shows that KDM6A binds poised and active enhancers and KDM6A loss led to decreased H3K27ac at enhancers, increased H3K27me3 levels in body of genes bound by KDM6A and decreased gene expression. Reestablishing histone acetylation with an HDAC3 inhibitor leads to upregulation of MHC expression, offering a strategy to restore immunogenicity of KDM6A deficient tumors. Loss of Kdm6a in murine RAS-transformed fibroblasts led to increased growth in vivo associated with decreased T cell infiltration.

2.
Sensors (Basel) ; 24(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38203106

RESUMEN

When conventional delivery vehicles are driven over complex terrain, large vibrations can seriously affect vehicle-loaded equipment and cargo. Semi-active vehicle-mounted vibration isolation control based on road preview can improve the stability of loaded cargo and instruments by enabling them to have lower vertical acceleration. A combined dynamic model including a vehicle and platform is developed first. In order to obtain a non-linear relationship between damping force and input current, a continuous damping control damper model is developed, and the corresponding external characteristic tests are carried out. Because some conventional control algorithms cannot handle complex constraints and preview information, a model predictive control algorithm based on forward road preview and input constraints is designed. Finally, simulations and real tests of the whole vehicle vibration environment are carried out. The results show that the proposed model predictive control based on road preview can effectively improve vibration isolation performance of the vehicle-mounted platform.

3.
Nat Immunol ; 11(1): 70-5, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19898473

RESUMEN

Balanced production of type I interferons and proinflammatory cytokines after engagement of Toll-like receptors (TLRs), which signal through adaptors containing a Toll-interleukin 1 receptor (TIR) domain, such as MyD88 and TRIF, has been proposed to control the pathogenesis of autoimmune disease and tumor responses to inflammation. Here we show that TRAF3, a ubiquitin ligase that interacts with both MyD88 and TRIF, regulated the production of interferon and proinflammatory cytokines in different ways. Degradative ubiquitination of TRAF3 during MyD88-dependent TLR signaling was essential for the activation of mitogen-activated protein kinases (MAPKs) and production of inflammatory cytokines. In contrast, TRIF-dependent signaling triggered noncanonical TRAF3 self-ubiquitination that activated the interferon response. Inhibition of degradative ubiquitination of TRAF3 prevented the expression of all proinflammatory cytokines without affecting the interferon response.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Citocinas/metabolismo , Interferón Tipo I/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Línea Celular , Citocinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Immunoblotting , Mediadores de Inflamación/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fosforilación , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor 3 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Ubiquitinación
4.
Breast Cancer Res ; 23(1): 77, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330319

RESUMEN

BACKGROUND: The mechanistic target of rapamycin (mTOR) pathway promoted by positive energy imbalance and insulin-like growth factors can be a mechanism by which obesity influences breast cancer risk. We evaluated the associations of body fatness with the risk of breast cancer varied with phosphorylated (p)-mTOR protein expression, an indication of the pathway activation. METHODS: Women with newly diagnosed breast cancer (n = 715; 574 [80%] Black and 141 [20%] White) and non-cancer controls (n = 1983; 1280 [64%] Black and 713 [36%] White) were selected from the Women's Circle of Health Study. Surgical tumor samples among the cases were immunostained for p-mTOR (Ser2448) and classified as p-mTOR-overexpressed, if the expression level ≥ 75th percentile, or p-mTOR-negative/low otherwise. Anthropometrics were measured by trained staff, and body composition was determined by bioelectrical impedance analysis. Odds ratios (ORs) of p-mTOR-overexpressed tumors and p-mTOR-negative/low tumors compared to controls were estimated using polytomous logistic regression. The differences in the associations by the p-mTOR expression status were assessed by tests for heterogeneity. RESULTS: Cases with p-mTOR-overexpressed tumors, but not cases with p-mTOR-negative/low tumors, compared to controls were more likely to have higher body mass index (BMI), percent body fat, and fat mass index (P-heterogeneity < 0.05), although the OR estimates were not significant. For the measurement of central adiposity, cases with p-mTOR overexpressed tumors had a higher odds of being at the Q3 (OR = 2.52, 95% CI = 1.46 to 4.34) and Q4 (OR = 1.99, 95% CI = 1.12 to 3.50) of waist circumference (WC) compared to controls. Similarly, cases with p-mTOR overexpressed tumors had a higher odds of being at the Q3 (OR = 1.82, 95% CI = 1.11 to 2.98) and Q4 (OR = 1.81, 95% CI = 1.11 to 2.98) of WHR compared to controls. These associations of WC and waist-to-hip ratio (WHR) did not differ by tumor p-mTOR status (P-heterogeneity = 0.27 and 0.48, respectively). CONCLUSIONS: Our findings suggest that in this population composed of predominately Black women, body fatness is associated with breast cancer differently for p-mTOR overexpression and p-mTOR negative/low expression. Whether mTOR plays a role in the obesity and breast cancer association warrants confirmation by prospective studies.


Asunto(s)
Negro o Afroamericano/estadística & datos numéricos , Neoplasias de la Mama/metabolismo , Obesidad/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adiposidad/etnología , Adulto , Índice de Masa Corporal , Tamaño Corporal/etnología , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etnología , Estudios de Casos y Controles , Femenino , Humanos , Persona de Mediana Edad , New Jersey/epidemiología , Ciudad de Nueva York/epidemiología , Obesidad/epidemiología , Obesidad/etnología , Oportunidad Relativa , Fosforilación
5.
Adv Exp Med Biol ; 1278: 229-256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33523451

RESUMEN

Regulatory T cells (Tregs) are critical in maintaining immune homeostasis under various pathophysiological conditions. A growing body of evidence demonstrates that Tregs play an important role in cancer progression and that they do so by suppressing cancer-directed immune responses. Tregs have been targeted for destruction by exploiting antibodies against and small-molecule inhibitors of several molecules that are highly expressed in Tregs-including immune checkpoint molecules, chemokine receptors, and metabolites. To date, these strategies have had only limited antitumor efficacy, yet they have also created significant risk of autoimmunity because most of them do not differentiate Tregs in tumors from those in normal tissues. Currently, immune checkpoint inhibitor (ICI)-based cancer immunotherapies have revolutionized cancer treatment, but the resistance to ICI is common and the elevation of Tregs is one of the most important mechanisms. Therapeutic strategies that can selectively eliminate Tregs in the tumor (i.e. therapies that do not run the risk of causing autoimmunity by affecting normal tissue), are urgently needed for the development of cancer immunotherapies. This chapter discusses specific properties of human Tregs under the context of cancer and the various ways to target Treg for cancer immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Autoinmunidad , Homeostasis , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico
6.
Genes Dev ; 27(13): 1435-40, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23796898

RESUMEN

Androgen-deprived prostate cancer (PCa) is infiltrated by B lymphocytes that produce cytokines that activate IκB kinase α (IKKα) to accelerate the emergence of castration-resistant tumors. We now demonstrate that infiltrating B lymphocytes and IKKα are also required for androgen-dependent expansion of epithelial progenitors responsible for prostate regeneration. In these cells and in PCa cells, IKKα phosphorylates transcription factor E2F1 on a site that promotes its nuclear translocation, association with the coactivator CBP, and recruitment to critical genomic targets that include Bmi1, a key regulator of normal and cancerous prostate stem cell renewal. The IKKα-BMI1 pathway is also activated in human PCa.


Asunto(s)
Linfocitos B/fisiología , Factor de Transcripción E2F1/metabolismo , Quinasa I-kappa B/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Próstata/fisiopatología , Proteínas Proto-Oncogénicas/metabolismo , Regeneración , Andrógenos/farmacología , Animales , Células Cultivadas , Factor de Transcripción E2F1/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Quinasa I-kappa B/genética , Masculino , Ratones , Recurrencia Local de Neoplasia/fisiopatología , Orquiectomía , Complejo Represivo Polycomb 1/genética , Próstata/efectos de los fármacos , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas/genética
7.
Nat Immunol ; 9(12): 1364-70, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18997792

RESUMEN

The adaptor and signaling proteins TRAF2, TRAF3, cIAP1 and cIAP2 may inhibit alternative nuclear factor-kappaB (NF-kappaB) signaling in resting cells by targeting NF-kappaB-inducing kinase (NIK) for ubiquitin-dependent degradation, thus preventing processing of the NF-kappaB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-kappaB signaling have remained elusive. We now show that CD40 or BAFF receptor activation result in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2-dependent way owing to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-kappaB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects.


Asunto(s)
Proteínas Serina-Treonina Quinasas/inmunología , Transducción de Señal/inmunología , Factor 2 Asociado a Receptor de TNF/inmunología , Factor 3 Asociado a Receptor de TNF/inmunología , Ubiquitinación/inmunología , Animales , Linfocitos B/inmunología , Citometría de Flujo , Humanos , Immunoblotting , Inmunohistoquímica , Proteínas Inhibidoras de la Apoptosis/inmunología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Secuencias Invertidas Repetidas , Ratones , Ratones Mutantes , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T/inmunología , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Quinasa de Factor Nuclear kappa B
8.
Adv Exp Med Biol ; 1240: 1-23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32060884

RESUMEN

Interleukin 1 (IL-1) has long been known for its pleiotropic effects on inflammation that plays a complex, and sometimes contrasting, role in different stages of cancer development. As a major proinflammatory cytokine, IL-1ß is mainly expressed by innate immune cells. IL-1α, however, is expressed by various cell types under physiological and pathological conditions. IL-1R1 is the main receptor for both ligands and is expressed by various cell types, including innate and adaptive immune cell types, epithelial cells, endothelial cells, adipocytes, chondrocytes, fibroblasts, etc. IL-1 and IL-1R1 receptor interaction leads to a set of common signaling pathways, mainly the NF-kB and MAP kinase pathways, as a result of complex positive and negative regulations. The variety of cell types with IL-1R1 expression dictates the role of IL-1 signaling at different stages of cancer, which under certain circumstances leads to contrasting roles in tumor development. Recent availability of IL-1R1 conditional knockout mouse model has made it possible to dissect the role of IL-1/IL-1R1 signaling transduction in different cell types within the tumor microenvironment. This chapter will focus on the role of IL-1/IL-1R1 in different cell types within the tumor microenvironment and discuss the potential of targeting this pathway in cancer therapy.


Asunto(s)
Interleucina-1/inmunología , Interleucina-1/metabolismo , Transducción de Señal , Microambiente Tumoral , Animales , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Interleucina-1/antagonistas & inhibidores , Ratones Noqueados , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
9.
Am J Pathol ; 188(8): 1910-1920, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29879416

RESUMEN

E-cadherin is conventionally considered to be a good prognostic marker in cancer. The loss of E-cadherin is one of the key hallmarks of epithelial-to-mesenchymal transition, a biological process that promotes cancer cell invasiveness and metastasis. Recent evidence has cast doubt on the importance of epithelial-to-mesenchymal transition in metastasis. The availability of protein-level data in the Cancer Genome Atlas allows for the quantitative analysis of protein and prognosis. The prognostic values of E-cadherin and ß-catenin were revisited across 19 cancer types, and high E-cadherin was found to correlate with good prognosis in most cancers. Conversely, higher E-cadherin and ß-catenin correlated with shorter survival in invasive breast carcinoma. Stratifying breast cancers by histologic subtype revealed that the poor prognosis of E-cadherin and ß-catenin proteins was characteristic of infiltrating ductal, but not lobular, carcinomas. To further corroborate the protein findings and examine cellular localization, immunohistochemistry was used for E-cadherin and ß-catenin in 163 breast patient samples from the Iowa cohort. Most previous studies showing that reduced or absent E-cadherin and ß-catenin was inversely associated with tumor stages in ductal carcinomas were confirmed. Taken together, these results lead us to question the prognostic values of E-cadherin and ß-catenin in ductal carcinomas and indicate a complicated role of E-cadherin and ß-catenin in breast cancer progression.


Asunto(s)
Antígenos CD/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Lobular/metabolismo , beta Catenina/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/patología , Femenino , Humanos , Pronóstico , Análisis por Matrices de Proteínas , Tasa de Supervivencia
10.
Nucleic Acids Res ; 45(4): 1687-1702, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-27899639

RESUMEN

Histone demethylase PHF8 is upregulated and plays oncogenic roles in various cancers; however, the mechanisms underlying its dysregulation and functions in carcinogenesis remain obscure. Here, we report the novel functions of PHF8 in EMT (epithelial to mesenchymal transition) and breast cancer development. Genome-wide gene expression analysis revealed that PHF8 overexpression induces an EMT-like process, including the upregulation of SNAI1 and ZEB1. PHF8 demethylates H3K9me1, H3K9me2 and sustains H3K4me3 to prime the transcriptional activation of SNAI1 by TGF-ß signaling. We show that PHF8 is upregulated and positively correlated with MYC at protein levels in breast cancer. MYC post-transcriptionally regulates the expression of PHF8 via the repression of microRNAs. Specifically, miR-22 directly targets and inhibits PHF8 expression, and mediates the regulation of PHF8 by MYC and TGF-ß signaling. This novel MYC/microRNAs/PHF8 regulatory axis thus places PHF8 as an important downstream effector of MYC. Indeed, PHF8 contributes to MYC-induced cell proliferation and the expression of EMT-related genes. We also report that PHF8 plays important roles in breast cancer cell migration and tumor growth. These oncogenic functions of PHF8 in breast cancer confer its candidacy as a promising therapeutic target for this disease.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/metabolismo , Transición Epitelial-Mesenquimal , Histona Demetilasas/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Activación Transcripcional , Factor de Crecimiento Transformador beta/farmacología
11.
Nature ; 470(7335): 548-53, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21326202

RESUMEN

Inflammatory mechanisms influence tumorigenesis and metastatic progression even in cancers whose aetiology does not involve pre-existing inflammation or infection, such as breast and prostate cancers. For instance, prostate cancer metastasis is associated with the infiltration of lymphocytes into advanced tumours and the upregulation of two tumour-necrosis-factor family members: receptor activator of nuclear factor-κB (RANK) ligand (RANKL) and lymphotoxin. But the source of RANKL and its role in metastasis have not been established. RANKL and its receptor RANK control the proliferation of mammary lobuloalveolar cells during pregnancy through inhibitor of nuclear factor-κB (IκB) kinase-α (IKK-α), a protein kinase that is needed for the self-renewal of mammary cancer progenitors and for prostate cancer metastasis. We therefore examined whether RANKL, RANK and IKK-α are also involved in mammary/breast cancer metastasis. Indeed, RANK signalling in mammary carcinoma cells that overexpress the proto-oncogene Erbb2 (also known as Neu), which is frequently amplified in metastatic human breast cancers, was important for pulmonary metastasis. Metastatic spread of Erbb2-transformed carcinoma cells also required CD4(+)CD25(+) T cells, whose major pro-metastatic function was RANKL production. Most RANKL-producing T cells expressed forkhead box P3 (FOXP3), a transcription factor produced by regulatory T cells, and were located next to smooth muscle actin (SMA)(+) stromal cells in mouse and human breast cancers. The dependence of pulmonary metastasis on T cells was replaceable by exogenous RANKL, which also stimulated pulmonary metastasis of RANK(+) human breast cancer cells. These results are consistent with the adverse impact of tumour-infiltrating CD4(+) or FOXP3(+) T cells on human breast cancer prognosis and suggest that the targeting of RANKL-RANK can be used in conjunction with the therapeutic elimination of primary breast tumours to prevent recurrent metastatic disease.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Linfocitos Infiltrantes de Tumor/metabolismo , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Transducción de Señal , Linfocitos T Reguladores/metabolismo , Animales , Antígenos CD4/genética , Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Línea Celular Tumoral , Femenino , Factores de Transcripción Forkhead/metabolismo , Genes RAG-1/genética , Humanos , Quinasa I-kappa B/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/patología , Proto-Oncogenes Mas , Ligando RANK/antagonistas & inhibidores , Ligando RANK/farmacología , Receptor Activador del Factor Nuclear kappa-B/deficiencia , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 111(38): 13870-5, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25189770

RESUMEN

Metastatic spread is the leading cause of cancer mortality. Breast cancer (BCa) metastatic recurrence can happen years after removal of the primary tumor. Here we show that Ubc13, an E2 enzyme that catalyzes K63-linked protein polyubiquitination, is largely dispensable for primary mammary tumor growth but is required for metastatic spread and lung colonization by BCa cells. Loss of Ubc13 inhibited BCa growth and survival only at metastatic sites. Ubc13 was dispensable for transforming growth factor ß (TGFß)-induced SMAD activation but was required for activation of non-SMAD signaling via TGFß-activating kinase 1 (TAK1) and p38, whose activity controls expression of numerous metastasis promoting genes. p38 activation restored metastatic activity to Ubc13-deficient cells, and its pharmacological inhibition attenuated BCa metastasis in mice, suggesting it is a therapeutic option for metastatic BCa.


Asunto(s)
Neoplasias de la Mama/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
13.
Commun Biol ; 7(1): 481, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641668

RESUMEN

Childhood Sjögren's disease represents critically unmet medical needs due to a complete lack of immunological and molecular characterizations. This study presents key immune cell subsets and their interactions in the periphery in childhood Sjögren's disease. Here we show that single-cell RNA sequencing identifies the subsets of IFN gene-enriched monocytes, CD4+ T effector memory, and XCL1+ NK cells as potential key players in childhood Sjögren's disease, and especially in those with recurrent parotitis, which is the chief symptom prompting clinical visits from young children. A unique cluster of monocytes with type I and II IFN-related genes is identified in childhood Sjögren's disease, compared to the age-matched control. In vitro regulatory T cell functional assay demonstrates intact functionality in childhood Sjögren's disease in contrast to reduced suppression in adult Sjögren's disease. Mapping this transcriptomic landscape and interplay of immune cell subsets will expedite the understanding of childhood Sjögren's disease pathogenesis and set the foundation for precision medicine.


Asunto(s)
Síndrome de Sjögren , Adulto , Niño , Humanos , Preescolar , Síndrome de Sjögren/genética , Síndrome de Sjögren/diagnóstico , Linfocitos T Reguladores , Perfilación de la Expresión Génica , Transcriptoma , Células Asesinas Naturales
14.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38712046

RESUMEN

Interleukin 2 (IL-2) is the first identified cytokine and its interaction with receptors has been known to shape the immune responses in many lymphoid or non-lymphoid tissues for more than four decades. Active T cells are the primary cellular source for IL-2 production and epithelial cells have never been considered the major cellular source of IL-2 under physiological conditions. It is, however, tempting to speculate that epithelial cells could potentially express IL-2 that regulates the intricate interactions between epithelial cells and lymphocytes. Datamining our recently published single-cell RNAseq in the mouse mammary gland identified IL-2 expression in mammary epithelial cells, which is induced by prolactin via the STAT5 signaling pathway. Furthermore, epithelial IL-2 plays a crucial role in maintaining the physiological functions of natural killer (NK) cells within the mammary glands. IL-2 deletion in the mammary epithelial cells leads to a significant reduction in the number and function of NK cells, which in turn results in defective immunosurveillance, expansion of luminal epithelial cells, and tumor development. Interestingly, T cells in the mammary glands are not changed, indicating the specific regulation of NK cells by epithelial IL-2 production. In agreement, we also found that human epithelial cells express IL-2 and NK cells express the highest level of IL2RB among all the immune cells. Here, we provide the first evidence that epithelial cells produce IL-2, which is critical for maintaining the physiological functions of NK cells in immunosurveillance.

15.
medRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826360

RESUMEN

This hypothesis-generating study aims to examine the extent to which computed tomography-assessed body composition phenotypes are associated with immune and PI3K/AKT signaling pathways in breast tumors. A total of 52 patients with newly diagnosed breast cancer were classified into four body composition types: adequate (lowest two tertiles of total adipose tissue [TAT]) and highest two tertiles of total skeletal muscle [TSM] areas); high adiposity (highest tertile of TAT and highest two tertiles of TSM); low muscle (lowest tertile of TSM and lowest two tertiles of TAT); and high adiposity with low muscle (highest tertile of TAT and lowest tertile of TSM). Immune and PI3K/AKT pathway proteins were profiled in tumor epithelium and the leukocyte-enriched stromal microenvironment using GeoMx (NanoString). Linear mixed models were used to compare log2-transformed protein levels. Compared with the normal type, the low muscle type was associated with higher expression of INPP4B (log2-fold change = 1.14, p = 0.0003, false discovery rate = 0.028). Other significant associations included low muscle type with increased CTLA4 and decreased pan-AKT expression in tumor epithelium, and high adiposity with increased CD3, CD8, CD20, and CD45RO expression in stroma (P<0.05; false discovery rate >0.2). With confirmation, body composition can be associated with signaling pathways in distinct components of breast tumors, highlighting the potential utility of body composition in informing tumor biology and therapy efficacies.

16.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405853

RESUMEN

The histone H3K27 demethylase KDM6A is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling. Most importantly, KDM6A binds and activates NLRC5 and CIITA encoding regulators of Major Histocompatibility Complex (MHC) genes. Patient data indicate that NLRC5 and CIITA, are downregulated in MM with low KDM6A expression. Chromatin analysis shows that KDM6A binds poised and active enhancers and KDM6A loss led to decreased H3K27ac at enhancers, increased H3K27me3 levels in body of genes bound by KDM6A and decreased gene expression. Reestablishing histone acetylation with an HDAC3 inhibitor leads to upregulation of MHC expression, offering a strategy to restore immunogenicity of KDM6A deficient tumors. Loss of Kdm6a in murine RAS-transformed fibroblasts led to increased growth in vivo associated with decreased T cell infiltration. Statement of significance: We show that KDM6A participates in immune recognition of myeloma tumor cells by directly regulating the expression of the master regulators of MHC-I and II, NLRC5 and CIITA. The expression of these regulators can by rescued by the HDAC3 inhibitors in KDM6A-null cell lines.

17.
bioRxiv ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38979295

RESUMEN

Tobacco smoke remains a serious global issue, resulting in serious health complications, contributing to the onsets of numerous preventive diseases, and imposing significant financial burdens. Despite regulatory policies and cessation measures aimed at curbing its usage, novel interventions are urgently needed for effective damage reduction. Our preclinical and pilot clinical studies showed that AB-free kava has the potential to reduce tobacco smoke-induced lung cancer risk, mitigate tobacco dependence, and reduce tobacco use. To understand the scope of its benefits in damage reduction and potential limitations, this study evaluated the effects of AB-free kava on a panel of health indicators in mice exposed to 2 - 4 weeks of daily tobacco smoke exposure. Our comprehensive assessments included global transcriptional profiling of the lung and liver tissues, analysis of lung inflammation, evaluation of lung function, exploration of tobacco nicotine withdrawal, and characterization of the causal PKA signaling pathway. As expected, Tobacco smoke exposure perturbed a wide range of biological processes and compromised multiple functions in mice. Remarkably, AB-free kava demonstrated the ability to globally mitigate tobacco smoke-induced deficits at the molecular and functional levels with promising safety profiles, offering a unique promise to mitigate tobacco smoke-related health damages. Further pre-clinical evaluation and clinical translation are warranted to fully harness the potential of AB-free kava in combating tobacco smoke-related harms.

18.
J Exp Med ; 221(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38334978

RESUMEN

An effective cancer therapy requires killing cancer cells and targeting the tumor microenvironment (TME). Searching for molecules critical for multiple cell types in the TME, we identified NR4A1 as one such molecule that can maintain the immune suppressive TME. Here, we establish NR4A1 as a valid target for cancer immunotherapy and describe a first-of-its-kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 degrades NR4A1 within hours in vitro and exhibits long-lasting NR4A1 degradation in tumors with an excellent safety profile. NR-V04 inhibits and frequently eradicates established tumors. At the mechanistic level, NR-V04 induces the tumor-infiltrating (TI) B cells and effector memory CD8+ T (Tem) cells and reduces monocytic myeloid-derived suppressor cells (m-MDSC), all of which are known to be clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anticancer immune responses and offers a new avenue for treating various types of cancers such as melanoma.


Asunto(s)
Melanoma , Células Supresoras de Origen Mieloide , Humanos , Línea Celular Tumoral , Inmunoterapia , Melanoma/patología , Células Supresoras de Origen Mieloide/patología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Microambiente Tumoral , Quimera Dirigida a la Proteólisis
19.
Breast Cancer Res ; 15(5): 316, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24172068

RESUMEN

Cancer stem cells are likely to play critical roles in metastasis, therapy resistance, and recurrence of hematological and solid malignancies. It is well known that the stem cell niche plays a key role for asymmetric division and homeostasis of normal stem cells, whereas cancer stem cells seem to use these niches. Among many pathways involved in self-renewal of cancer stem cells, nuclear factor-kappa B (NF-κB) signaling has been documented to promote their expansion in a cell-autonomous fashion. A recent study, however, suggests that paracrine NF-κB activation promotes the expansion of cancer stem cells through the activation of Notch in basal-type breast cancer cells.


Asunto(s)
Proteínas de Unión al Calcio/biosíntesis , Carcinoma Basocelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Proteínas de la Membrana/biosíntesis , FN-kappa B/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Humanos
20.
Proc Natl Acad Sci U S A ; 107(44): 18956-60, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20956327

RESUMEN

Mice bearing a v-Myc myelocytomatosis viral oncogene homolog (c-Myc) transgene controlled by an Ig-alpha heavy-chain enhancer (iMyc(Cα) mice) rarely develop lymphomas but instead have increased rates of memory B-cell turnover and impaired antibody responses to antigen. We found that male progeny of iMyc(Cα) mice mated with mice transgenic (Tg) for CD257 (B-cell activating factor, BAFF) developed CD5(+) B-cell leukemia resembling human chronic lymphocytic leukemia (CLL), which also displays a male gender bias. Surprisingly, leukemic cells of Myc/Baff Tg mice expressed higher levels of c-Myc than did B cells of iMyc(Cα) mice. We found that CLL cells of many patients with progressive disease also expressed high amounts of c-MYC, particularly CLL cells whose survival depends on nurse-like cells (NLC), which express high-levels of BAFF. We find that BAFF could enhance CLL-cell expression of c-MYC via activation the canonical IκB kinase (IKK)/NF-κB pathway. Inhibition of the IKK/NF-κB pathway in mouse or human leukemia cells blocked the capacity of BAFF to induce c-MYC or promote leukemia-cell survival and significantly impaired disease progression in Myc/Baff Tg mice. This study reveals an important relationship between BAFF and c-MYC in CLL which may affect disease development and progression, and suggests that inhibitors of the canonical NF-κB pathway may be effective in treatment of patients with this disease.


Asunto(s)
Factor Activador de Células B/metabolismo , Linfocitos B/metabolismo , Genes myc , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Factor Activador de Células B/genética , Factor Activador de Células B/inmunología , Linfocitos B/inmunología , Femenino , Regulación Leucémica de la Expresión Génica/genética , Regulación Leucémica de la Expresión Génica/inmunología , Humanos , Memoria Inmunológica , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/inmunología , Masculino , Ratones , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/inmunología , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA