Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 842
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Plant Cell ; 35(5): 1304-1317, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36724050

RESUMEN

Although many studies have elucidated the mechanisms by which different wavelengths of light (blue, red, far-red, or ultraviolet-B [UV-B]) regulate plant development, whether and how green light regulates plant development remains largely unknown. Previous studies reported that green light participates in regulating growth and development in land plants, but these studies have reported conflicting results, likely due to technical problems. For example, commercial green light-emitting diode light sources emit a little blue or red light. Here, using a pure green light source, we determined that unlike blue, red, far-red, or UV-B light, which inhibits hypocotyl elongation, green light promotes hypocotyl elongation in Arabidopsis thaliana and several other plants during the first 2-3 d after planting. Phytochromes, cryptochromes, and other known photoreceptors do not mediate green-light-promoted hypocotyl elongation, but the brassinosteroid (BR) signaling pathway is involved in this process. Green light promotes the DNA binding activity of BRI1-EMS-SUPPRESSOR 1 (BES1), a master transcription factor of the BR pathway, thus regulating gene transcription to promote hypocotyl elongation. Our results indicate that pure green light promotes elongation via BR signaling and acts as a shade signal to enable plants to adapt their development to a green-light-dominant environment under a canopy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Hipocótilo , Brasinoesteroides/metabolismo , Arabidopsis/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas
2.
Proc Natl Acad Sci U S A ; 120(27): e2300204120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364111

RESUMEN

Inflammasomes are one kind of important innate immune defense against viral and bacterial infections. Several inflammasome-forming sensors detect molecular patterns of invading pathogens and then trigger inflammasome activation and/or pyroptosis in infected cells, and viruses employ unique strategies to hijack or subvert inflammasome activation. Infection with herpesviruses induces the activation of diverse inflammasomes, including AIM2 and IFI16 inflammasomes; however, how Kaposi's sarcoma-associated herpesvirus (KSHV) counteracts inflammasome activation largely remains unclear. Here, we reveal that the KSHV ORF37-encoded SOX protein suppresses AIM2 inflammasome activation independent of its viral DNA exonuclease activity and host mRNA turnover. SOX interacts with the AIM2 HIN domain through the C-terminal Motif VII region and disrupts AIM2:dsDNA polymerization and ASC recruitment and oligomerization. The Y443A or F444A mutation of SOX abolishes the inhibition of AIM2 inflammasome without disrupting SOX nuclease activity, and a short SOX peptide is capable of inhibiting AIM2 inflammasome activation; consequently, infection with SOX-null, Y443A, or F444A Bac16 recombinant viruses results in robust inflammasome activation, suppressed lytic replication, and increased pyroptosis in human lymphatic endothelial cells in an AIM2-dependent manner. These results reveal that KSHV SOX suppresses AIM2 inflammasome activation to promote KSHV lytic replication and inhibit pyroptosis, representing a unique mechanism for evasion of inflammasome activation during KSHV lytic cycle.


Asunto(s)
Herpesvirus Humano 8 , Inflamasomas , Replicación Viral , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Endoteliales , Herpesvirus Humano 8/metabolismo , Inflamasomas/genética , Inflamasomas/metabolismo , Replicación Viral/fisiología , Piroptosis
3.
Proc Natl Acad Sci U S A ; 120(12): e2218825120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917666

RESUMEN

Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.


Asunto(s)
Gammaherpesvirinae , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Humanos , Adenosina Trifosfatasas/metabolismo , Gammaherpesvirinae/genética , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/genética , Herpesvirus Humano 8/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Latencia del Virus/genética , Replicación Viral
4.
PLoS Pathog ; 19(1): e1011103, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656913

RESUMEN

Primary effusion lymphoma (PEL), a rare aggressive B-cell lymphoma in immunosuppressed patients, is etiologically associated with oncogenic γ-herpesvirus infection. Chemotherapy is commonly used to treat PEL but usually results in poor prognosis and survival; thus, novel therapies and drug development are urgently needed for PEL treatment. Here, we demonstrated that inhibition of Ring finger protein 5 (RNF5), an ER-localized E3 ligase, suppresses multiple cellular pathways and lytic replication of Kaposi sarcoma-associated herpesvirus (KSHV) in PEL cells. RNF5 interacts with and induces Ephrin receptors A3 (EphA3) and EphA4 ubiquitination and degradation. RNF5 inhibition increases the levels of EphA3 and EphA4, thereby reducing ERK and Akt activation and KSHV lytic replication. RNF5 inhibition decreased PEL xenograft tumor growth and downregulated viral gene expression, cell cycle gene expression, and hedgehog signaling in xenograft tumors. Our study suggests that RNF5 plays the critical roles in KSHV lytic infection and tumorigenesis of primary effusion lymphoma.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Humano 8 , Linfoma de Efusión Primaria , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Proteínas Hedgehog/metabolismo , Transducción de Señal , Línea Celular Tumoral , Replicación Viral , Proteínas de Unión al ADN/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
PLoS Pathog ; 19(11): e1011792, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956198

RESUMEN

Melanoma differentiation-associated gene-5 (MDA5) acts as a cytoplasmic RNA sensor to detect viral dsRNA and mediates antiviral innate immune responses to infection by RNA viruses. Upon recognition of viral dsRNA, MDA5 is activated with K63-linked polyubiquitination and then triggers the recruitment of MAVS and activation of TBK1 and IKKα/ß, subsequently leading to IRF3 and NF-κB phosphorylation. However, the specific E3 ubiquitin ligase for MDA5 K63-polyubiquitination has not been well characterized. Great numbers of symptomatic and severe infections of SARS-CoV-2 are spreading worldwide, and the poor efficacy of treatment with type I interferon and antiviral immune agents indicates that SARS-CoV-2 escapes from antiviral immune responses via several unknown mechanisms. Here, we report that SARS-CoV-2 nonstructural protein 8 (nsp8) acts as a suppressor of antiviral innate immune and inflammatory responses to promote infection of SARS-CoV-2. It downregulates the expression of type I interferon, IFN-stimulated genes and proinflammatory cytokines by binding to MDA5 and TRIM4 and impairing TRIM4-mediated MDA5 K63-linked polyubiquitination. Our findings reveal that nsp8 mediates innate immune evasion during SARS-CoV-2 infection and may serve as a potential target for future therapeutics for SARS-CoV-2 infectious diseases.


Asunto(s)
COVID-19 , Interferón Tipo I , SARS-CoV-2 , Humanos , COVID-19/genética , Inmunidad Innata , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , SARS-CoV-2/metabolismo , Transducción de Señal
6.
J Immunol ; 210(6): 745-752, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36705528

RESUMEN

Gout is a chronic disease caused by monosodium urate crystal deposition. Previous studies have focused on the resident macrophage, infiltrating monocyte, and neutrophil responses to monosodium urate crystal, yet the mechanisms of the potential involvement of other immune cells remain largely unknown. In this study, we enrolled seven gout patients and five age-matched healthy individuals and applied single-cell mass cytometry to study the distribution of immune cell subsets in peripheral blood. To our knowledge, our study reveals the immune cell profiles of gout at different stages for the first time. We identified many immune cell subsets that are dysregulated in gout and promote gouty inflammation, especially those highly expressing CCR4 and OX40 (TNFR superfamily member 4), including CCR4+OX40+ monocytes, CCR4+OX40+CD56high NK cells, CCR4+OX40+CD4+ NK T cells, and CCR4+CD38+CD4+ naïve T cells. Notably, the plasma levels of CCL17 and CCL22, measured by ELISA, increased in the acute phase of gout and declined in the interval. We also found a clue that Th2-type immune responses may participate in gout pathology. Moreover, the subset of granzyme B+ (GZMB+) CD38+ NK cells is positively correlated with serum urea acid level, and another two γδT subsets, GZMB+CD161+ γδT cells and GZMB+CCR5+ γδT cells, are negatively correlated with erythrocyte sedimentation rate. In sum, gouty arthritis is not a disease simply mediated by macrophages; multiple types of immune cell may be involved in the pathogenesis of the disease. Future research needs to shift attention to other immune cell subsets, such as NK cells and T cells, which will facilitate the identification of novel therapeutic targets.


Asunto(s)
Artritis Gotosa , Gota , Humanos , Ácido Úrico , Monocitos , Análisis de la Célula Individual
7.
J Am Chem Soc ; 146(11): 7400-7407, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456799

RESUMEN

Peptidoglycan (PG), an essential exoskeletal polymer in bacteria, is a well-known antibiotic target. PG polymerization requires the action of bacterial transglycosylases (TGases), which couple the incoming glycosyl acceptor to the donor. Interfering with the TGase activity can interrupt the PG assembly. Existing TGase inhibitors like moenomycin and Lipid II analogues always occupy the TGase active sites; other strategies to interfere with proper PG elongation have not been widely exploited. Inspired by the natural 1,6-anhydro-MurNAc termini that mark the ends of PG strands in bacteria, we hypothesized that the incorporation of an anhydromuramyl-containing glycosyl acceptor by TGase into the growing PG may effectively inhibit PG elongation. To explore this possibility, we synthesized 4-O-(N-acetyl-ß-d-glucosaminyl)-1,6-anhydro-N-acetyl-ß-d-muramyl-l-Ala-γ-d-Glu-l-Lys-d-Ala-d-Ala, 1, within 15 steps, and demonstrated that this anhydromuropeptide and its analogue lacking the peptide, 1-deAA, were both utilized by bacterial TGase as noncanonical anhydro glycosyl acceptors in vitro. The incorporation of an anhydromuramyl moiety into PG strands by TGases afforded efficient termination of glycan chain extension. Moreover, the preliminary in vitro studies of 1-deAA against Staphylococcus aureus showed that 1-deAA served as a reasonable antimicrobial adjunct of vancomycin. These insights imply the potential application of such anhydromuropeptides as novel classes of PG-terminating inhibitors, pointing toward novel strategies in antibacterial agent development.


Asunto(s)
Antibacterianos , Peptidoglicano , Peptidoglicano/química , Antibacterianos/farmacología , Bacterias/metabolismo , Glicosiltransferasas/metabolismo
8.
J Am Chem Soc ; 146(17): 11811-11822, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635880

RESUMEN

The development of novel agents with immunoregulatory effects is a keen way to combat the growing threat of inflammatory storms to global health. To synthesize pseudo-steroidal glycosides tethered by ether bonds with promising immunomodulatory potential, we develop herein a highly effective deoxygenative functionalization of a novel steroidal donor (steroidation) facilitated by strain-release, leveraging cost-effective and readily available Sc(OTf)3 catalysis. This transformation produces a transient steroid-3-yl carbocation which readily reacts with O-, C-, N-, S-, and P-nucleophiles to generate structurally diverse steroid derivatives. DFT calculations were performed to shed light on the mechanistic details of the regioselectivity, underlying an acceptor-dependent steroidation mode. This approach can be readily extended to the etherification of sugar alcohols to enable the achievement of a diversity-oriented, pipeline-like synthesis of pseudo-steroidal glycosides in good to excellent yields with complete stereo- and regiospecific control for anti-inflammatory agent discovery. Immunological studies have demonstrated that a meticulously designed cholesteryl disaccharide can significantly suppress interleukin-6 secretion in macrophages, exhibiting up to 99% inhibition rates compared to the negative control. These findings affirm the potential of pseudo-steroidal glycosides as a prospective category of lead agents for the development of novel anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Glicósidos , Esteroides , Glicósidos/química , Glicósidos/síntesis química , Glicósidos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Esteroides/química , Esteroides/farmacología , Esteroides/síntesis química , Ratones , Animales , Humanos , Teoría Funcional de la Densidad , Estructura Molecular , Interleucina-6/antagonistas & inhibidores , Interleucina-6/metabolismo , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Macrófagos/efectos de los fármacos
9.
J Gene Med ; 26(1): e3613, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37861176

RESUMEN

BACKGROUND: Programmed cell death (PCD) is a natural process in which cells undergo controlled self-destruction, which plays a crucial role in maintaining tissue homeostasis and eliminating damaged or unnecessary cells. The connection between PCD and osteosarcoma was explored in the present study. METHODS: Twelve types of PCD were collected for developing a prognostic signature in osteosarcoma using machine learning algorithms. The prognostic value, pathway annotation and drug prediction of the signature were explored. RESULTS: Telomerase reverse transcriptase (TERT) was found to be a potent hazardous marker in osteosarcoma and could facilitate the proliferation and migration of osteosarcoma. CONCLUSIONS: In summary, the present study has developed a prognostic signature for osteosarcoma and identifies TERT as a potent hazardous gene. The study suggests that further research is needed to address the underlying mechanism of how TERT affects the immune response in osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Muerte Celular/genética , Apoptosis , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Algoritmos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética
10.
Cancer Immunol Immunother ; 73(9): 176, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954030

RESUMEN

BACKGROUND: Tissue-resident memory CD103+CD8+ T cells (CD103+CD8+ TRMs) are important components of anti-tumor immunity. However, the significance of CD103+CD8+ TRMs in colorectal cancer (CRC) and their advantages remain unclear. METHODS: Clinical data and specimens were used to evaluate the significance of CD103+CD8+ TRMs in CRC. A mouse subcutaneous tumorigenesis model and colony-formation assay were conducted to evaluate the anti-tumor effects of CD103+CD8+ TRMs. Finally, the infiltration density and function of CD103+CD8+ TRMs in the tumors were evaluated using flow cytometry. RESULTS: In this study, we showed that highly infiltrated CD103+CD8+ TRMs were associated with earlier clinical stage and negative VEGF expression in CRC patients and predicted a favorable prognosis for CRC/CRC liver metastases patients. Interestingly, we also found that CD103+CD8+ TRMs may have predictive potential for whether CRC develops liver metastasis in CRC. In addition, we found a positive correlation between the ratio of the number of α-SMA+ vessels to the sum of the number of α-SMA+ and CD31+ vessels in CRC, and the infiltration level of CD103+CD8+ TRMs. In addition, anti-angiogenic therapy promoted infiltration of CD103+CD8+ TRMs and enhanced their ability to secrete interferon (IFN)-γ, thus further improving the anti-tumor effect. Moreover, in vivo experiments showed that compared with peripheral blood CD8+ T cells, CD103+CD8+ TRMs infused back into the body could also further promote CD8+ T cells to infiltrate the tumor, and they had a stronger ability to secrete IFN-γ, which resulted in better anti-tumor effects. CONCLUSION: We demonstrated that CD103+CD8+ TRMs have the potential for clinical applications and provide new ideas for combined anti-tumor therapeutic strategies, such as anti-tumor angiogenesis therapy and CAR-T combined immunotherapy.


Asunto(s)
Antígenos CD , Linfocitos T CD8-positivos , Neoplasias Colorrectales , Memoria Inmunológica , Cadenas alfa de Integrinas , Neoplasias Hepáticas , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Cadenas alfa de Integrinas/metabolismo , Cadenas alfa de Integrinas/inmunología , Animales , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Antígenos CD/metabolismo , Pronóstico , Femenino , Masculino , Biomarcadores de Tumor/metabolismo , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad
11.
Planta ; 259(5): 93, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509429

RESUMEN

MAIN CONCLUSION: dnal7, a novel allelic variant of the OsHSP40, affects rice plant architecture and grain yield by coordinating auxins, cytokinins, and gibberellic acids. Plant height and leaf morphology are the most important traits of the ideal plant architecture (IPA), and discovering related genes is critical for breeding high-yield rice. Here, a dwarf and narrow leaf 7 (dnal7) mutant was identified from a γ-ray treated mutant population, which exhibits pleiotropic effects, including dwarfing, narrow leaves, small seeds, and low grain yield per plant compared to the wild type (WT). Histological analysis showed that the number of veins and the distance between adjacent small veins (SVs) were significantly reduced compared to the WT, indicating that DNAL7 controls leaf size by regulating the formation of veins. Map-based cloning and transgenic complementation revealed that DNAL7 is allelic to NAL11, which encodes OsHSP40, and the deletion of 2 codons in dnal7 destroyed the His-Pro-Asp (HPD) motif of OsHSP40. In addition, expression of DNAL7 in both WT and dnal7 gradually increased with the increase of temperature in the range of 27-31 °C. Heat stress significantly affected the seedling height and leaf width of the dnal7 mutant. A comparative transcriptome analysis of WT and dnal7 revealed that DNAL7 influenced multiple metabolic pathways, including plant hormone signal transduction, carbon metabolism, and biosynthesis of amino acids. Furthermore, the contents of the cytokinins in leaf blades were much higher in dnal7 than in the WT, whereas the contents of auxins were lower in dnal7. The contents of bioactive gibberellic acids (GAs) including GA1, GA3, and GA4 in shoots were decreased in dnal7. Thus, DNAL7 regulates rice plant architecture by coordinating the balance of auxins, cytokinins, and GAs. These results indicate that OsHSP40 is a pleiotropic gene, which plays an important role in improving rice yield and plant architecture.


Asunto(s)
Giberelinas , Oryza , Oryza/metabolismo , Alelos , Fitomejoramiento , Citocininas/metabolismo , Grano Comestible/genética , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo
12.
Phys Rev Lett ; 132(21): 210202, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856248

RESUMEN

Einstein-Podolsky-Rosen (EPR) steering, a distinctive quantum correlation, reveals a unique and inherent asymmetry. This research delves into the multifaceted asymmetry of EPR steering within high-dimensional quantum systems, exploring both theoretical frameworks and experimental validations. We introduce the concept of genuine high-dimensional one-way steering, wherein a high Schmidt number of bipartite quantum states is demonstrable in one steering direction but not reciprocally. Additionally, we explore two criteria to certify the lower and upper bounds of the Schmidt number within a one-sided device-independent context. These criteria serve as tools for identifying potential asymmetric dimensionality of EPR steering in both directions. By preparing two-qutrit mixed states with high fidelity, we experimentally observe asymmetric structures of EPR steering in the C^{3}⊗C^{3} Hilbert space. Our Letter offers new perspectives to understand the asymmetric EPR steering beyond qubits and has potential applications in asymmetric high-dimensional quantum information tasks.

13.
Exp Eye Res ; 238: 109739, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042515

RESUMEN

Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 µM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.


Asunto(s)
Infecciones Bacterianas , Quemaduras Químicas , Lesiones de la Cornea , Neovascularización de la Córnea , Quemaduras Oculares , Ratas , Humanos , Animales , Quemaduras Químicas/complicaciones , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Neovascularización de la Córnea/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Peróxido de Hidrógeno/farmacología , Neovascularización Patológica/metabolismo , Lesiones de la Cornea/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/tratamiento farmacológico , Quemaduras Oculares/patología , Modelos Animales de Enfermedad , Álcalis/toxicidad
14.
EMBO Rep ; 23(12): e54911, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305233

RESUMEN

Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Ratones , Animales , Trastorno Depresivo Mayor/genética , Fosfatidilinositol 3-Quinasas , Neuronas , Plasticidad Neuronal
15.
Helicobacter ; 29(4): e13109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38951739

RESUMEN

BACKGROUND: Integrin-linked kinase (ILK) is crucial in solid tumors by regulating the Hippo-Yes-associated protein 1 (YAP) pathway. This study aimed to uncover how Helicobacter pylori influences ILK levels and its role in regulating YAP during H. pylori-induced gastric cancer. MATERIALS AND METHODS: GES-1 cells with stable Ilk knockdown and overexpression and a mouse carcinogenesis model for H. pylori infection were constructed. And ILK, the phosphorylated mammalian STE20-like protein kinase 1 (MST1), large tumor suppressor 1 (LATS1; S909, T1079), and YAP (S109, S127) were detected in cells, and mice by western blotting, as well as fluorescence intensity of YAP were assayed by immunofluorescence. YAP downstream genes Igfbp4 and Ctgf, the pathological changes and tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1ß), and nitric oxide (NO) levels in mice gastric tissues were detected by real-time PCR, H&E, and ELISA assays. RESULTS: In this study, stable Ilk knockdown cells exhibited significantly higher phosphorylated levels of MST1, LATS1, and YAP, as well as increased YAP in the nuclei of GES-1 cells. Conversely, cells with Ilk overexpression showed opposite results. H. pylori infection led to decreased ILK levels in gastric epithelial cells but increased ILK levels in gastric cancer cell lines (MGC803, SGC7901) and gastric cancer tissues in mice. Treatment with the ILK inhibitor OST-T315 elevated the phosphorylated MST, LATS1, and YAP levels, and inhibited the mRNA levels of Igfbp4 and Ctgf at 44, 48 week-aged mice. OST-T315 also reduced the release of TNF-α, IL-6, IL-1ß, and NO, as well as the progression of gastric cancer caused by H. pylori and N-Nitroso-N-methylurea (NMU) treatment. CONCLUSION: Upon initiation of gastric tumorigenesis signals, H. pylori increases ILK levels and suppresses Hippo signaling, thereby promoting YAP activation and gastric cancer progression. ILK can serve as a potential prevention target to impede H. pylori-induced gastric cancer.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Proteínas Serina-Treonina Quinasas , Neoplasias Gástricas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Ratones , Humanos , Modelos Animales de Enfermedad , Línea Celular , Masculino
16.
Fish Shellfish Immunol ; 149: 109546, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614412

RESUMEN

Histones and their N-terminal or C-terminal derived peptides have been studied in vertebrates and presented as potential antimicrobial agents playing important roles in the innate immune defenses. Although histones and their derived peptides had been reported as components of innate immunity in invertebrates, the knowledge about the histone derived antimicrobial peptides (HDAPs) in invertebrates are still limited. Using a peptidomic technique, a set of peptide fragments derived from the histones was identified in this study from the serum of microbes challenged Mytilus coruscus. Among the 85 identified histone-derived-peptides with high confidence, 5 HDAPs were chemically synthesized and the antimicrobial activities were verified, showing strong growth inhibition against Gram-positive bacteria, Gram-negative bacteria, and fungus. The gene expression level of the precursor histones matched by representative HDAPs were further tested using q-PCR, and the results showed a significant upregulation of the histone gene expression levels in hemocytes, gill, and mantle of the mussel after immune stress. In addition, three identified HDAPs were selected for preparation of specific antibodies, and the corresponding histones and their derived C-terminal fragments were detected by Western blotting in the blood cell and serum of immune challenged mussel, respectively, indicating the existence of HDAPs in M. coruscus. Our findings revealed the immune function of histones in Mytilus, and confirmed the existence of HDAPs in the mussel. The identified Mytilus HDAPs represent a new source of immune effector with antimicrobial function in the innate immune system, and thus provide promising candidates for the treatment of microbial infections in aquaculture and medicine.


Asunto(s)
Péptidos Antimicrobianos , Histonas , Inmunidad Innata , Mytilus , Animales , Mytilus/inmunología , Mytilus/genética , Histonas/inmunología , Histonas/genética , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/química , Inmunidad Innata/genética , Bacterias Gramnegativas/fisiología , Bacterias Gramnegativas/efectos de los fármacos
17.
Brain ; 146(4): 1561-1579, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36059072

RESUMEN

Bridging integrator 1 (BIN1) is the second most prevalent genetic risk factor identified by genome-wide association studies (GWAS) for late-onset Alzheimer's disease. BIN1 encodes an adaptor protein that regulates membrane dynamics in the context of endocytosis and neurotransmitter vesicle release. In vitro evidence suggests that BIN1 can directly bind to tau in the cytosol. In addition, BIN1's function limits extracellular tau seed uptake by endocytosis and subsequent propagation as well as influences tau release through exosomes. However, the in vivo roles of BIN1 in tau pathogenesis and tauopathy-mediated neurodegeneration remain uncharacterized. We generated conditional knockout mice with a selective loss of Bin1 expression in the forebrain excitatory neurons and oligodendrocytes in P301S human tau transgenic background (line PS19). PS19 mice develop age-dependent tau neuropathology and motor deficits and are commonly used to study Alzheimer's disease tau pathophysiology. The severity of motor deficits and neuropathology was compared between experimental and control mice that differ with respect to forebrain BIN1 expression. BIN1's involvement in tau pathology and neuroinflammation was quantified by biochemical methods and immunostaining. Transcriptome changes were profiled by RNA-sequencing analysis to gain molecular insights. The loss of forebrain BIN1 expression in PS19 mice exacerbated tau pathology in the somatosensory cortex, thalamus, spinal cord and sciatic nerve, accelerated disease progression and caused early death. Intriguingly, the loss of BIN1 also mitigated tau neuropathology in select regions, including the hippocampus, entorhinal/piriform cortex, and amygdala, thus attenuating hippocampal synapse loss, neuronal death, neuroinflammation and brain atrophy. At the molecular level, the loss of forebrain BIN1 elicited complex neuronal and non-neuronal transcriptomic changes, including altered neuroinflammatory gene expression, concomitant with an impaired microglial transition towards the disease-associated microglial phenotype. These results provide crucial new information on in vivo BIN1 function in the context of tau pathogenesis. We conclude that forebrain neuronal BIN1 expression promotes hippocampal tau pathogenesis and neuroinflammation. Our findings highlight an exciting region specificity in neuronal BIN1 regulation of tau pathogenesis and reveal cell-autonomous and non-cell-autonomous mechanisms involved in BIN1 modulation of tau neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Humanos , Animales , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Enfermedades Neuroinflamatorias , Ratones Transgénicos , Estudio de Asociación del Genoma Completo , Tauopatías/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ratones Noqueados , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas del Tejido Nervioso/genética
18.
Brain Topogr ; 37(3): 410-419, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37833486

RESUMEN

Autism spectrum disorder (ASD) is not a discrete disorder and that symptoms of ASD (i.e., so-called "autistic traits") are found to varying degrees in the general population. Typically developing individuals with sub-clinical yet high-level autistic traits have similar abnormities both in behavioral performances and cortical activation patterns to individuals diagnosed with ASD. Thus it's crucial to develop objective and efficient tools that could be used in the assessment of autistic traits. Here, we proposed a novel machine learning-based assessment of the autistic traits using EEG microstate features derived from a brief resting-state EEG recording. The results showed that: (1) through the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and correlation analysis, the mean duration of microstate class D, the occurrence rate of microstate class A, the time coverage of microstate class D and the transition rate from microstate class B to D were selected to be crucial microstate features which could be used in autistic traits prediction; (2) in the support vector regression (SVR) model, which was constructed to predict the participants' autistic trait scores using these four microstate features, the out-of-sample predicted autistic trait scores showed a significant and good match with the self-reported scores. These results suggest that the resting-state EEG microstate analysis technique can be used to predict autistic trait to some extent.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Electroencefalografía/métodos
19.
Xenobiotica ; 54(2): 64-74, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38197324

RESUMEN

Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults. Available treatments have not markedly improved patient survival in the last twenty years. However, genomic investigations have showed that the PI3K pathway is frequently altered in this glioma, making it a potential therapeutic target.Paxalisib is a brain penetrant PI3K/mTOR inhibitor (mouse Kp,uu 0.31) specifically developed for the treatment of GBM. We characterised the preclinical pharmacokinetics and efficacy of paxalisib and predicted its pharmacokinetics and efficacious dose in humans.Plasma protein binding of paxalisib was low, with the fraction unbound ranging from 0.25 to 0.43 across species. The hepatic clearance of paxalisib was predicted to be low in mice, rats, dogs and humans, and high in monkeys, from hepatocytes incubations. The plasma clearance was low in mice, moderate in rats and high in dogs and monkeys. Oral bioavailability ranged from 6% in monkeys to 76% in rats.The parameters estimated from the pharmacokinetic/pharmacodynamic modelling of the efficacy in the subcutaneous U87 xenograft model combined with the human pharmacokinetics profile predicted by PBPK modelling suggested that a dose of 56 mg may be efficacious in humans. Paxalisib is currently tested in Phase III clinical trials.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Inhibidores de Proteínas Quinasas , Humanos , Ratas , Ratones , Animales , Perros , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de las Quinasa Fosfoinosítidos-3/metabolismo , Encéfalo/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
20.
Immun Ageing ; 21(1): 42, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918830

RESUMEN

BACKGROUND: Neutrophils play an essential role in Alzheimer's disease (AD) pathology. However, the extent of their heterogeneity remains poorly explored, particularly in the context of developing novel therapies targeting these cells. RESULTS: We investigate the population structure of neutrophils purified from peripheral blood samples of AD mice. Utilizing single cell RNA sequencing, we comprehensively map neutrophil populations into six distinct clusters and find that the Neu-5 subset is specially enriched in AD mice. This subset exhibits fewer specific granules and a lower mature score. Gene ontology (GO) analysis reveals that genes involved in cytokine-mediated signaling are downregulated in the Neu-5 cluster. Furthermore, we identify the Ccrl2 gene is specifically upregulated in this subgroup, which is confirmed by flow cytometry in AD mice. Finally, immunohistochemical staining indicates that CCRL2 protein is increased in the brains of AD mice. CONCLUSIONS: We identify a unique CCRL2 positive neutrophil cluster, that is specifically enriched in the peripheral blood of AD mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA