Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(8): e0026723, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37582207

RESUMEN

Avian leukemia virus subgroup J (ALV-J) causes various diseases associated with tumor formation and decreased fertility and induced immunosuppressive disease, resulting in significant economic losses in the poultry industry globally. Virus usually exploits the host cellular machinery for their replication. Although there are increasing evidences for the cellular proteins involving viral replication, the interaction between ALV-J and host proteins leading to the pivotal steps of viral life cycle are still unclear. Here, we reported that ribonucleoside-diphosphate reductase subunit M2 (RRM2) plays a critical role during ALV-J infection by interacting with capsid protein P27 and activating Wnt/ß-catenin signaling. We found that the expression of RRM2 is effectively increased during ALV-J infection, and that RRM2 facilitates ALV-J replication by interacting with viral capsid protein P27. Furthermore, ALV-J P27 activated Wnt/ß-catenin signaling by promoting ß-catenin entry into the nucleus, and RRM2 activated Wnt/ß-catenin signaling by enhancing its phosphorylation at Ser18 during ALV-J infection. These data suggest that the upregulation of RRM2 expression by ALV-J infection favors viral replication in host cells via activating Wnt/ß-catenin signaling. IMPORTANCE Our results revealed a novel mechanism by which RRM2 facilitates ALV-J growth. That is, the upregulation of RRM2 expression by ALV-J infection favors viral replication by interacting with capsid protein P27 and activating Wnt/ß-catenin pathway in host cells. Furthermore, the phosphorylation of serine at position 18 of RRM2 was verified to be the important factor regulating the activation of Wnt/ß-catenin signaling. This study provides insights for further studies of the molecular mechanism of ALV-J infection.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Ribonucleósido Difosfato Reductasa , Vía de Señalización Wnt , Animales , Virus de la Leucosis Aviar/metabolismo , beta Catenina/metabolismo , Proteínas de la Cápside/metabolismo , Pollos , Ribonucleósido Difosfato Reductasa/metabolismo
2.
Magn Reson Med ; 91(5): 1936-1950, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38174593

RESUMEN

PURPOSE: Widely used conventional 2D T2 * approaches that are based on breath-held, electrocardiogram (ECG)-gated, multi-gradient-echo sequences are prone to motion artifacts in the presence of incomplete breath holding or arrhythmias, which is common in cardiac patients. To address these limitations, a 3D, non-ECG-gated, free-breathing T2 * technique that enables rapid whole-heart coverage was developed and validated. METHODS: A continuous random Gaussian 3D k-space sampling was implemented using a low-rank tensor framework for motion-resolved 3D T2 * imaging. This approach was tested in healthy human volunteers and in swine before and after intravenous administration of ferumoxytol. RESULTS: Spatial-resolution matched T2 * images were acquired with 2-3-fold reduction in scan time using the proposed T2 * mapping approach relative to conventional T2 * mapping. Compared with the conventional approach, T2 * images acquired with the proposed method demonstrated reduced off-resonance and flow artifacts, leading to higher image quality and lower coefficient of variation in T2 *-weighted images of the myocardium of swine and humans. Mean myocardial T2 * values determined using the proposed and conventional approaches were highly correlated and showed minimal bias. CONCLUSION: The proposed non-ECG-gated, free-breathing, 3D T2 * imaging approach can be performed within 5 min or less. It can overcome critical image artifacts from undesirable cardiac and respiratory motion and bulk off-resonance shifts at the heart-lung interface. The proposed approach is expected to facilitate faster and improved cardiac T2 * mapping in those with limited breath-holding capacity or arrhythmias.


Asunto(s)
Corazón , Miocardio , Humanos , Animales , Porcinos , Corazón/diagnóstico por imagen , Respiración , Contencion de la Respiración , Imagen por Resonancia Cinemagnética/métodos , Imagen por Resonancia Magnética , Imagenología Tridimensional/métodos
3.
Circulation ; 146(20): 1492-1503, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36124774

RESUMEN

BACKGROUND: Myocardial scars are assessed noninvasively using cardiovascular magnetic resonance late gadolinium enhancement (LGE) as an imaging gold standard. A contrast-free approach would provide many advantages, including a faster and cheaper scan without contrast-associated problems. METHODS: Virtual native enhancement (VNE) is a novel technology that can produce virtual LGE-like images without the need for contrast. VNE combines cine imaging and native T1 maps to produce LGE-like images using artificial intelligence. VNE was developed for patients with previous myocardial infarction from 4271 data sets (912 patients); each data set comprises slice position-matched cine, T1 maps, and LGE images. After quality control, 3002 data sets (775 patients) were used for development and 291 data sets (68 patients) for testing. The VNE generator was trained using generative adversarial networks, using 2 adversarial discriminators to improve the image quality. The left ventricle was contoured semiautomatically. Myocardial scar volume was quantified using the full width at half maximum method. Scar transmurality was measured using the centerline chord method and visualized on bull's-eye plots. Lesion quantification by VNE and LGE was compared using linear regression, Pearson correlation (R), and intraclass correlation coefficients. Proof-of-principle histopathologic comparison of VNE in a porcine model of myocardial infarction also was performed. RESULTS: VNE provided significantly better image quality than LGE on blinded analysis by 5 independent operators on 291 data sets (all P<0.001). VNE correlated strongly with LGE in quantifying scar size (R, 0.89; intraclass correlation coefficient, 0.94) and transmurality (R, 0.84; intraclass correlation coefficient, 0.90) in 66 patients (277 test data sets). Two cardiovascular magnetic resonance experts reviewed all test image slices and reported an overall accuracy of 84% for VNE in detecting scars when compared with LGE, with specificity of 100% and sensitivity of 77%. VNE also showed excellent visuospatial agreement with histopathology in 2 cases of a porcine model of myocardial infarction. CONCLUSIONS: VNE demonstrated high agreement with LGE cardiovascular magnetic resonance for myocardial scar assessment in patients with previous myocardial infarction in visuospatial distribution and lesion quantification with superior image quality. VNE is a potentially transformative artificial intelligence-based technology with promise in reducing scan times and costs, increasing clinical throughput, and improving the accessibility of cardiovascular magnetic resonance in the near future.


Asunto(s)
Aprendizaje Profundo , Infarto del Miocardio , Porcinos , Animales , Cicatriz/diagnóstico por imagen , Cicatriz/patología , Gadolinio , Medios de Contraste , Inteligencia Artificial , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Imagen por Resonancia Magnética/métodos , Miocardio/patología , Imagen por Resonancia Cinemagnética/métodos
4.
Ann Neurol ; 91(2): 268-281, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34878197

RESUMEN

OBJECTIVE: A major challenge in multiple sclerosis (MS) research is the understanding of silent progression and Progressive MS. Using a novel method to accurately capture upper cervical cord area from legacy brain MRI scans we aimed to study the role of spinal cord and brain atrophy for silent progression and conversion to secondary progressive disease (SPMS). METHODS: From a single-center observational study, all RRMS (n = 360) and SPMS (n = 47) patients and 80 matched controls were evaluated. RRMS patient subsets who converted to SPMS (n = 54) or silently progressed (n = 159), respectively, during the 12-year observation period were compared to clinically matched RRMS patients remaining RRMS (n = 54) or stable (n = 147), respectively. From brain MRI, we assessed the value of brain and spinal cord measures to predict silent progression and SPMS conversion. RESULTS: Patients who developed SPMS showed faster cord atrophy rates (-2.19%/yr) at least 4 years before conversion compared to their RRMS matches (-0.88%/yr, p < 0.001). Spinal cord atrophy rates decelerated after conversion (-1.63%/yr, p = 0.010) towards those of SPMS patients from study entry (-1.04%). Each 1% faster spinal cord atrophy rate was associated with 69% (p < 0.0001) and 53% (p < 0.0001) shorter time to silent progression and SPMS conversion, respectively. INTERPRETATION: Silent progression and conversion to secondary progressive disease are predominantly related to cervical cord atrophy. This atrophy is often present from the earliest disease stages and predicts the speed of silent progression and conversion to Progressive MS. Diagnosis of SPMS is rather a late recognition of this neurodegenerative process than a distinct disease phase. ANN NEUROL 2022;91:268-281.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Médula Espinal/patología , Adulto , Atrofia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Progresión de la Enfermedad , Femenino , Foramen Magno/diagnóstico por imagen , Foramen Magno/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Médula Espinal/diagnóstico por imagen
5.
BMC Genomics ; 23(1): 825, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513979

RESUMEN

BACKGROUND: The transition from fertilized egg to embryo in chicken requires activation of hundreds of genes that were mostly inactivated before fertilization, which is accompanied with various biological processes. Undoubtedly, transcription factors (TFs) play important roles in regulating the changes in gene expression pattern observed at early development. However, the contribution of TFs during early embryo development of chicken still remains largely unknown that need to be investigated. Therefore, an understanding of the development of vertebrates would be greatly facilitated by study of the dynamic changes in transcription factors during early chicken embryo. RESULTS: In the current study, we selected five early developmental stages in White Leghorn chicken, gallus gallus, for transcriptome analysis, cover 17,478 genes with about 807 million clean reads of RNA-sequencing. We have compared global gene expression patterns of consecutive stages and noted the differences. Comparative analysis of differentially expressed TFs (FDR < 0.05) profiles between neighboring developmental timepoints revealed significantly enriched biological categories associated with differentiation, development and morphogenesis. We also found that Zf-C2H2, Homeobox and bHLH were three dominant transcription factor families that appeared in early embryogenesis. More importantly, a TFs co-expression network was constructed and 16 critical TFs were identified. CONCLUSION: Our findings provide a comprehensive regulatory framework of TFs in chicken early embryo, revealing new insights into alterations of chicken embryonic TF expression and broadening better understanding of TF function in chicken embryogenesis.


Asunto(s)
Pollos , Factores de Transcripción , Embrión de Pollo , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pollos/genética , Pollos/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Desarrollo Embrionario/genética
6.
Microb Pathog ; 160: 105196, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34534643

RESUMEN

Pasteurella multocida, an important gram-negative pathogen that mainly inhibits the upper respiratory tracts of domestic and wild animals such as chicken, duck, cattle and pig, which can cause cholera fowl, haemorrhagic septicaemia and infectious pneumonia. Currently, the prevalence and infection of P.multocida is still one of the most serious threats to the poultry industry in China, but studies on its characteristics are still insufficient. Here, this study was conducted to isolate and identify P.multocida in infected ducks and determined the leading serotypes and epidemiology of the diseases this pathogen causes. Results indicated that all the isolates were positive for KMT1 gene and the PCR amplified products were approximately 460 bp, demonstrating that these strains were all P.multocida. Moreover, all the isolated strains were identified as capsular type A and lipopolysaccharide type L1. Virulence factor identification results revealed that all strains possessed genes related to pili, adhesin, iron metabolism and uptake. In contrast, toxin coding gene (toxA) and sialidase encodes genes (nan B and nan H) were not detected in any isolates. The drug susceptibility results indicated that all the isolates were resistant to Lincomycin, Chloramphenicol, Clindamycin and Oxacillin but were sensitive to Ceftriaxone and Cefalotin. The animal experiments were also performed to further determine the pathogenicity of these isolated strains. Animal experiment revealed that the liver, kidney, and heart of infected ducks were swollen and had bleeding spots. We also observed hepatocyte hypertrophy, hepatic sinus congestion and single-cell infiltration in infected ducks through H&E staining. In summary, this study demonstrated that all the isolated strains belong to capsular A and lipopolysaccharide type L1 P.multocida, but their virulence factors, drug resistance and pathogenicity were different.


Asunto(s)
Infecciones por Pasteurella , Pasteurella multocida , Enfermedades de las Aves de Corral , Animales , Bovinos , China/epidemiología , Patos , Infecciones por Pasteurella/veterinaria , Pasteurella multocida/genética , Enfermedades de las Aves de Corral/epidemiología , Porcinos
7.
J Cardiovasc Magn Reson ; 23(1): 88, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34261494

RESUMEN

BACKGROUND: Intramyocardial hemorrhage (IMH) within myocardial infarction (MI) is associated with major adverse cardiovascular events. Bright-blood T2*-based cardiovascular magnetic resonance (CMR) has emerged as the reference standard for non-invasive IMH detection. Despite this, the dark-blood T2*-based CMR is becoming interchangeably used with bright-blood T2*-weighted CMR in both clinical and preclinical settings for IMH detection. To date however, the relative merits of dark-blood T2*-weighted with respect to bright-blood T2*-weighted CMR for IMH characterization has not been studied. We investigated the diagnostic capacity of dark-blood T2*-weighted CMR against bright-blood T2*-weighted CMR for IMH characterization in clinical and preclinical settings. MATERIALS AND METHODS: Hemorrhagic MI patients (n = 20) and canines (n = 11) were imaged in the acute and chronic phases at 1.5 and 3 T with dark- and bright-blood T2*-weighted CMR. Imaging characteristics (Relative signal-to-noise (SNR), Relative contrast-to-noise (CNR), IMH Extent) and diagnostic performance (sensitivity, specificity, accuracy, area-under-the-curve, and inter-observer variability) of dark-blood T2*-weighted CMR for IMH characterization were assessed relative to bright-blood T2*-weighted CMR. RESULTS: At both clinical and preclinical settings, compared to bright-blood T2*-weighted CMR, dark-blood T2*-weighted images had significantly lower SNR, CNR and reduced IMH extent (all p < 0.05). Dark-blood T2*-weighted CMR also demonstrated weaker sensitivity, specificity, accuracy, and inter-observer variability compared to bright-blood T2*-weighted CMR (all p < 0.05). These observations were consistent across infarct age and imaging field strengths. CONCLUSION: While IMH can be visible on dark-blood T2*-weighted CMR, the overall conspicuity of IMH is significantly reduced compared to that observed in bright-blood T2*-weighted images, across infarct age in clinical and preclinical settings at 1.5 and 3 T. Hence, bright-blood T2*-weighted CMR would be preferable for clinical use since dark-blood T2*-weighted CMR carries the potential to misclassify hemorrhagic MIs as non-hemorrhagic MIs.


Asunto(s)
Hemorragia , Infarto del Miocardio , Animales , Perros , Hemorragia/diagnóstico por imagen , Hemorragia/etiología , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen , Miocardio , Valor Predictivo de las Pruebas
8.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462568

RESUMEN

Interferons (IFNs) play a crucial role in host antiviral response by activating the JAK/STAT (Janus kinase/signal transducer and activator of transcription) signaling pathway to induce the expression of myriad genes. STAT2 is a key player in the IFN-activated JAK/STAT signaling. Porcine reproductive and respiratory syndrome virus (PRRSV) is an important viral pathogen, causing huge losses to the swine industry. PRRSV infection elicits a meager protective immune response in pigs. The objective of this study was to investigate the effect of PRRSV on STAT2 signaling. Here, we demonstrated that PRRSV downregulated STAT2 to inhibit IFN-activated signaling. PRRSV strains of both PRRSV-1 and PRRSV-2 species reduced the STAT2 protein level, whereas the STAT2 transcript level had minimal change. PRRSV reduced the STAT2 level in a dose-dependent manner and shortened STAT2 half-life significantly from approximately 30 to 5 h. PRRSV-induced STAT2 degradation could be restored by treatment with the proteasome inhibitor MG132 and lactacystin. In addition, PRRSV nonstructural protein 11 (nsp11) was identified to interact with and reduce STAT2. The N-terminal domain (NTD) of nsp11 was responsible for STAT2 degradation and interacted with STAT2 NTD and the coiled-coil domain. Mutagenesis analysis showed that the amino acid residue K59 of nsp11 was indispensable for inducing STAT2 reduction. Mutant PRRSV with the K59A mutation generated by reverse genetics almost lost the ability to reduce STAT2. Together, these results demonstrate that PRRSV nsp11 antagonizes IFN signaling via mediating STAT2 degradation and provide further insights into the PRRSV interference of the innate immunity.IMPORTANCE PRRSV infection elicits a meager protective immune response in pigs. One of the possible reasons is that PRRSV antagonizes interferon induction and its downstream signaling. Interferons are key components in the innate immunity and play crucial roles against viral infection and in the activation of adaptive immune response via JAK/STAT signaling. STAT2 is indispensable in the JAK/STAT signaling since it is also involved in activation of antiviral activity in the absence of STAT1. Here, we discovered that PRRSV nsp11 downregulates STAT2. Interestingly, the N-terminal domain of nsp11 is responsible for inducing STAT2 degradation and directly interacts with STAT2 N-terminal domain. We also identified a crucial amino acid residue K59 in nsp11 since a mutation of it led to loss of the ability to downregulate STAT2. A mutant PRRSV with mutation of K59 had minimal effect on STAT2 reduction. Our data provide further insights into PRRSV interference with interferon signaling.


Asunto(s)
Endorribonucleasas/metabolismo , Interferones/antagonistas & inhibidores , Interferones/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Factor de Transcripción STAT2/antagonistas & inhibidores , Factor de Transcripción STAT2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Endorribonucleasas/química , Células HEK293 , Células HeLa , Humanos , Inmunidad Innata , Interferón-alfa/farmacología , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/metabolismo , Modelos Moleculares , Fosforilación , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Dominios Proteicos , Transducción de Señal , Porcinos , Proteínas no Estructurales Virales/química
9.
J Virol ; 92(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29263268

RESUMEN

The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution.IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced functionality in mediating subgroup B, D, and E ALV infection. Unlike the control of herpesvirus-induced diseases by vaccination, the control of avian leukosis in chickens has relied totally on virus eradication measures and host genetic resistance. This finding enriches the allelic pool of the tvb gene and expands the potential for genetic improvement of ALV resistance in varied chicken populations by selection.


Asunto(s)
Virus de la Leucosis Aviar/metabolismo , Leucosis Aviar , Proteínas Aviares , Pollos , Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad , Receptores Virales , Animales , Leucosis Aviar/genética , Leucosis Aviar/metabolismo , Virus de la Leucosis Aviar/genética , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Línea Celular , Pollos/genética , Pollos/metabolismo , Pollos/virología , Receptores Virales/genética , Receptores Virales/metabolismo
10.
RNA Biol ; 16(1): 118-132, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30608205

RESUMEN

Circular RNAs (circRNAs) are evolutionarily conserved and widely present, but their functions remain largely unknown. Recent development has highlighted the importance of circRNAs as the sponge of microRNA (miRNA) in cancer. We previously reported that gga-miR-375 was downregulated in the liver tumors of chickens infected with avian leukosis virus subgroup J (ALV-J) by microRNA microarray assay. It can be reasonably assumed in accordance with previous studies that the gga-miR-375 may be related to circRNAs. However, the question as to which circRNA acts as the sponge for gga-miR-375 remains to be answered. In this study, circRNA sequencing results revealed that a circRNA Vav3 termed circ-Vav3 was upregulated in the liver tumors of chickens infected with ALV-J. In addition, RNA immunoprecipitation (RIP), biotinylated RNA pull-down and RNA-fluorescence in situ hybridization (RNA-FISH) experiments were conducted to confirm that circ-Vav3 serves as the sponge of gga-miR-375. Furthermore, we confirmed through dual luciferase reporter assay that YAP1 is the target gene of gga-miR-375. The effect of the sponge function of circ-Vav3 on its downstream genes has been further verified by our conclusion that the sponge function of circ-Vav3 can abrogate gga-miR-375 target gene YAP1 and increase the expression level of YAP1. We further confirmed that the circ-Vav3/gga-miR-375/YAP1 axis induces epithelial-mesenchymal transition (EMT) through influencing EMT markers to promote tumorigenesis. Finally, clinical ALV-J-induced tumor livers were collected to detect core gene expression levels to provide a proof to the concluded tumorigenic mechanism. Together, our results suggest that circ-Vav3/gga-miR-375/YAP1 axis is another regulator of tumorigenesis.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , Interferencia de ARN , ARN/genética , Regiones no Traducidas 3' , Animales , Leucosis Aviar/complicaciones , Leucosis Aviar/virología , Sitios de Unión , Movimiento Celular/genética , Pollos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Circular
12.
Arch Virol ; 161(11): 3039-46, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27503348

RESUMEN

Members of avian leukosis virus subgroup J (ALV-J) cause various diseases associated with tumor formation and decreased fertility, resulting in major economic losses in the poultry industry worldwide. To assess the status of ALV-J infection in meat-type chickens in southern China, the molecular epidemiology of ALV-J strains was investigated. A total of 265 clinical samples collected from southern China from 2013 to 2014 were investigated in this study for the presence of ALV-J, which resulted in 12 virus isolates. Phylogenetic analysis showed that 91.7 % (11/12) of the ALV-J isolates have possessed high homology to Chinese layer isolates and belong to one subgroup. One of the ALV isolates (designated GD1411-1) was relatively closely related to the ALV-J broiler isolates, indicating that the GD1411-1 isolate might be a transition strain. Several unique nucleotide substitutions in gp85 and the U3 region were detected in all 12 ALV-J isolates. This study provides some interesting information on the molecular characterization of ALV-J isolates. These findings will be beneficial for understanding of the pathogenic mechanism of ALV-J infection.


Asunto(s)
Virus de la Leucosis Aviar/clasificación , Virus de la Leucosis Aviar/aislamiento & purificación , Leucosis Aviar/epidemiología , Leucosis Aviar/virología , Genotipo , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Animales , Virus de la Leucosis Aviar/genética , Pollos , China/epidemiología , Epidemiología Molecular , Filogenia , Mutación Puntual , Análisis de Secuencia de ADN
13.
Arch Virol ; 161(10): 2717-25, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27422398

RESUMEN

Avian leukosis virus (ALV) causes high mortality associated with tumor formation and decreased fertility, and results in major economic losses in the poultry industry worldwide. Recently, a putative novel ALV subgroup virus named ALV-K was observed in Chinese local chickens. In this study, a novel ALV strain named GD14LZ was isolated from a Chinese local yellow broiler in 2014. The proviral genome was sequenced and phylogenetically analyzed. The replication ability and pathogenicity of this virus were also evaluated. The complete proviral genome sequence of GD14LZ was 7482 nt in length, with a genetic organization typical of replication-competent type C retroviruses lacking viral oncogenes. Sequence analysis showed that the gag, pol and gp37 genes of GD14LZ have high sequence similarity to those of other ALV strains (A-E subgroups), especially to those of ALV-E. The gp85 gene of the GD14LZ isolate showed a low sequence similarity to those other ALV strains (A-E subgroups) but showed high similarity to strains previously described as ALV-K. Phylogenetic analysis of gp85 also suggested that the GD14LZ isolate was related to ALV-K strains. Further study showed that this isolate replicated more slowly and was less pathogenic than other ALV strains. These results indicate that the GD14LZ isolate belongs to the novel subgroup ALV-K and probably arose by recombination of ALV-K with endogenous viruses with low replication and pathogenicity. This virus might have existed in local Chinese chickens for a long time.


Asunto(s)
Virus de la Leucosis Aviar/genética , Virus de la Leucosis Aviar/aislamiento & purificación , Pollos/virología , Evolución Molecular , Variación Genética , Provirus/genética , Provirus/aislamiento & purificación , Animales , Virus de la Leucosis Aviar/clasificación , Virus de la Leucosis Aviar/fisiología , China , Análisis por Conglomerados , ADN Viral/genética , Genoma Viral , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Replicación Viral
14.
Magn Reson Imaging ; 105: 125-132, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37993042

RESUMEN

PURPOSE: Studies have shown that double-inversion-recovery (DIR) prepared dark-blood T2*-weighted images result in lower SNR, CNR and diagnostic accuracy for intramyocardial hemorrhage (IMH) detection compared to non-DIR-prepared (bright-blood) T2*-weighted images; however, the mechanism contributing to this observation has not been investigated and explained in detail. This work tests the hypothesis that the loss of SNR on dark-blood cardiac T2*-weighted images of IMH stems from spin-relaxation during the long RF pulses in double inversion preparation, as a result, compromising image contrast for intramyocardial hemorrhage detection. METHODS: Phantom and in-vivo animal studies were performed to test the hypothesis of the study. An agar phantom was imaged with multi-gradient-echo T2* imaging protocols with and without double-inversion-recovery (DIR) preparation. Image acquisitions were placed at different delay times (TD) after DIR preparation. SNR, T2* and Coefficient of Variation (COV) were measured and compared between DIR-prepared and non-DIR-prepared images. Canines with hemorrhagic myocardial infarctions were scanned at 3.0 T with DIR-prepared (dark-blood) and non-DIR-prepared (bright-blood) T2* imaging protocols. DIR-prepared T2* images were acquired with short, medium, and long delay times (TD). SNR, CNR, intramyocardial hemorrhage (IMH) extent, T2* and COV were measured and compared between DIR-prepared T2* images with short, medium, and long delay times (TD) to non-DIR-prepared bright-blood T2* images. RESULTS: Phantom studies confirmed the hypothesis that the SNR loss on DIR-prepared T2* images originated from signal loss during DIR preparation. SNR followed T1 recovery curve with increased delay times (TD) indicating that SNR can be recovered with longer time delay between DIR and image acquisition. Myocardial T2* values were not affected by DIR preparation but COV of T2* was elevated. Animal studies supported the hypothesis and showed that DIR-prepared T2* images with insufficient delay time (TD) had impaired sensitivity for IMH detection due to lower SNR and CNR, and higher COV. CONCLUSION: We conclude that lower SNR and CNR on DIR-prepared T2* images originate from signal loss during DIR preparation and insufficient recovery between DIR preparation and image acquisition. Although, the impaired sensitivity can be recovered by extending delay time (TD), it will extend the scan time. Bright-blood T2* imaging protocols should remain the optimal choice for assessment of intramyocardial hemorrhage. DIR-prepared dark-blood T2* imaging protocols should be performed with extra attention on image signal-to-noise ratio when used for intramyocardial hemorrhage detection.


Asunto(s)
Imagen por Resonancia Magnética , Infarto del Miocardio , Animales , Perros , Imagen por Resonancia Magnética/métodos , Corazón , Miocardio , Infarto del Miocardio/diagnóstico por imagen , Hemorragia/diagnóstico por imagen
15.
Microorganisms ; 12(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38674684

RESUMEN

Subgroup J avian leukemia virus (ALV-J) and chicken infectious anemia virus (CIAV) are widely acknowledged as significant immunosuppressive pathogens that commonly co-infect chickens, causing substantial economic losses in the poultry industry. However, whether co-infection of ALV-J and CIAV have synergistic pathogenicity remains uncertain. To explore their synergistic pathogenesis, we established a co-infection model of ALV-J and CIAV in HD11 cells and specific-pathogen-free (SPF) chickens. We discovered that ALV-J and CIAV can synergistically promote the secretion of IL-6, IL-10, IFN-α, and IFN-γ and apoptosis in HD11 cells. In vivo, compared to the ALV-J and CIAV mono-infected group, the mortality increased significantly by 27% (20 to 47%) and 14% (33 to 47%) in the co-infected group, respectively. We also discovered that ALV-J and CIAV synergistically inhibited weight gain and exhibited more severe organ damage in co-infected chickens. Furthermore, we found that CIAV can promote the replication of ALV-J in HD11 cells and significantly enhance ALV-J viral load in blood and tissues of co-infected chickens, but ALV-J cannot promote the replication of CIAV. Moreover, by measuring the immune organ indexes and proportions of blood CD3+CD4+ and CD3+CD8+ lymphocytes, more serious instances of immunosuppression were observed in ALV-J and CIAV co-infected chickens than in mono-infected chickens. Taken together, our findings demonstrate that ALV-J and CIAV synergistically enhance pathogenicity and immunosuppression.

16.
J Hazard Mater ; 468: 133831, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402684

RESUMEN

Microorganisms, especially viruses, cause disease in both humans and animals. Environmental chemical pollutants including microplastics, pesticides, antibiotics sand air pollutants arisen from human activities affect both animal and human health. This review assesses the impact of chemical and biological contaminants (virus and bacteria) on viruses including its life cycle, survival, mutations, loads and titers, shedding, transmission, infection, re-assortment, interference, abundance, viral transfer between cells, and the susceptibility of the host to viruses. It summarizes the sources of environmental contaminants, interactions between contaminants and viruses, and methods used to mitigate such interactions. Overall, this review provides a perspective of environmentally co-occurring contaminants on animal viruses that would be useful for future research on virus-animal-human-ecosystem harmony studies to safeguard human and animal health.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Plaguicidas , Virus , Contaminantes Químicos del Agua , Animales , Humanos , Contaminantes Ambientales/toxicidad , Contaminantes Atmosféricos/toxicidad , Microplásticos , Plásticos , Monitoreo del Ambiente/métodos , Ecosistema , Plaguicidas/toxicidad , Antibacterianos , Bacterias , Contaminantes Químicos del Agua/química
17.
Vet Sci ; 11(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38535856

RESUMEN

Among broilers, the main pathogen that leads to swollen head syndrome (SHS) is the subgroup C avian metapneumovirus (aMPV-C). The aMPV-C infection can lead to an upsurge in the rate of soft-shell eggs, resulting in reduced egg production and seriously affecting the economy of the livestock industry. Therefore, a rapid method for aMPV-C detection needs to be invented. According to the N gene of aMPV-C, we designed the specific probe and primer and created a reverse transcription recombinase-aided amplification assay (RT-RAA) for the detection of aMPV-C. aMPV-C could be detected quickly and specifically by this method at 41 °C for 30 min. The sensitivity assay inferred that the minimum detection threshold of RT-RAA was 3.38 × 101 copies/µL. A specificity assay showed that the RT-RAA method did not cross-react with other subgroups (aMPV-A, aMPV-B, aMPV-D) or other viruses (H9N2, NDV, IBV, IBDV). Forty samples of known clinical background were tested by RT-RAA and RT-qPCR. The two approaches had a 100% correlation rate. In conclusion, this research successfully created an RT-RAA assay for aMPV-C.

18.
Poult Sci ; 103(8): 103898, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38936216

RESUMEN

Exosome-mediated horizontal and vertical transmission of subgroup J avian leukosis virus (ALV-J) in poultry flocks can lead to growth inhibition and severe immunosuppression. However, there are few reports on the early infection of chicken embryonic stem cells (cESCs) with ALV-J. In this study, we confirmed that early infection with ALV-J can accelerate the differentiation of cESCs and promote the secretion of exosomes. To investigate the modulation strategy of ALV-J in cESCs, circRNA sequencing was performed for further analysis. A total of 305 differentially expressed circRNAs (DECs) were obtained, including 71 upregulated DECs. Circ-CCDC7 was found to be the most upregulated DEC and was assessed by qRT-PCR, with the result consistent with the result of circRNA-seq. Based on qRT-PCR, gga-miR-6568-3p was found to be the target of the top 3 DECs, including circ-CCDC7, and the stem cell marker gene Pax7 was identified as the target gene of gga-miR-6568-3p. This study demonstrated that exosomal circ-CCDC7/gga-miR-6568-3p/Pax7 accelerates the differentiation of cESCs after early infection with ALV-J.

19.
J Virol ; 86(19): 10896-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22966189

RESUMEN

A new isolate of chicken anemia virus (CAV) was designated GD-1-12. GD-1-12 was isolated from a 12-day-old commercial broiler in Guangdong province, China, in 2012. The GD-1-12 CAV caused high mortality, severe anemia, thymic atrophy, and subcutaneous hemorrhage in commercial broilers. Here, we report the complete genome sequence of GD-1-12 CAV and comparison with the complete genome sequence of another CAV that was isolated from human fecal samples in China (GenBank accession no. JQ690762). The genomes of the two CAV isolates shared high homology, although a deletion was identified by comparison. The findings from this study provide additional insights into the molecular characteristics of the CAV genomes and should advance knowledge for continuous monitoring and, perhaps, preventing the spread of the virus in chickens as well as in humans.


Asunto(s)
Virus de la Anemia del Pollo/genética , Heces/virología , Genoma Viral , Animales , Pollos , China , Infecciones por Circoviridae/virología , Humanos , Datos de Secuencia Molecular , Enfermedades de las Aves de Corral/virología , Análisis de Secuencia de ADN
20.
Poult Sci ; 102(3): 102365, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36610104

RESUMEN

Intestinal damage from the duck plague virus (DPV) infection affects intestinal inflammation factors expression and barrier dysfunction. Here we report findings from the pathogenicity of the intestinal tract, intestinal morphological, intestinal permeability, inflammatory cytokines, and tight junction gene expression in 72 two-wk-old Muscovy ducks exposed to DPV. The characterization of intestinal metabolites and their classification were examined using 16-sequencing technology. The primary outcomes of the study evaluated the correlation between intestinal microbiota characteristics and the degree of infected tissue. The secondary outcomes were to determine whether the biosignatures that defined the microbiota were positively or negatively correlated with viral infection. The tissue was infected accompanied a mild damage of liver and spleen, and severe intestinal bleeding. Two inoculation routes were constructed with susceptible animals to assess the pathogenicity of the DPV in order to enrich the status of infection in Muscovy ducks. High levels of virus titer from Muscovy ducks were found being in the intestine. The expression of INF-α and IL-ß with viral infection increased at 4, and 6 dpi, respectively, after detecting of the inflammatory factor and barrier function genes. At 4 and 6 dpi, barrier function gene of ZO-1 and Occludin reduced. The severity of viral infection was significantly correlated with the characteristics of the intestinal microbiota. Ducks infected with the DPV had an increase in the phylum Firmicutes, a decrease in the phylum Actinobacteriota, and differential enrichment with the genus Bacteroides, Tyzzerella, Enterococcus, and Escherchia-Shigella, while the genus Rothia, Streptococcus, and Ralstonia were differentially enriched in the control group. The findings from the current study demonstrated that DPV infection leads to an imbalance of the intestinal microbiota and disruption of the microbial homeostasis in the intestinal tissue in ducks, which might be one of the mechanisms whereby DPV infection might be established in Muscovy ducks. Na+/K+-ATPase and Ca2+/Mg2+-ATPase activity monitoring also showed that viral infection reduced these activities. These findings imply that changes in intestinal microbiota, intestinal barrier gene expression, and inflammatory factor are related to viral infection. When taken as a whole, this work provides fresh perspectives on the characteristics of intestinal microbiota and the infection damage caused by the DPV.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Animales , Patos , Pollos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA