Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(21): 14754-14764, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38754363

RESUMEN

Lithium-sulfur (Li-S) batteries are highly considered as next-generation energy storage techniques. Weakly solvating electrolyte with low lithium polysulfide (LiPS) solvating power promises Li anode protection and improved cycling stability. However, the cathodic LiPS kinetics is inevitably deteriorated, resulting in severe cathodic polarization and limited energy density. Herein, the LiPS kinetic degradation mechanism in weakly solvating electrolytes is disclosed to construct high-energy-density Li-S batteries. Activation polarization instead of concentration or ohmic polarization is identified as the dominant kinetic limitation, which originates from higher charge-transfer activation energy and a changed rate-determining step. To solve the kinetic issue, a titanium nitride (TiN) electrocatalyst is introduced and corresponding Li-S batteries exhibit reduced polarization, prolonged cycling lifespan, and high actual energy density of 381 Wh kg-1 in 2.5 Ah-level pouch cells. This work clarifies the LiPS reaction mechanism in protective weakly solvating electrolytes and highlights the electrocatalytic regulation strategy toward high-energy-density and long-cycling Li-S batteries.

2.
Angew Chem Int Ed Engl ; 63(34): e202405802, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38837569

RESUMEN

Solid polymer electrolytes are promising electrolytes for safe and high-energy-density lithium metal batteries. However, traditional ether-based polymer electrolytes are limited by their low lithium-ion conductivity and narrow electrochemical window because of the well-defined and intimated Li+-oxygen binding topologies in the solvation structure. Herein, we proposed a new strategy to reduce the Li+-polymer interaction and strengthen the anion-polymer interaction by combining strong Li+-O (ether) interactions, weak Li+-O (ester) interactions with steric hindrance in polymer electrolytes. In this way, a polymer electrolyte with a high lithium ion transference number (0.80) and anion-rich solvation structure is obtained. This polymer electrolyte possesses a wide electrochemical window (5.5 V versus Li/Li+) and compatibility with both Li metal anode and high-voltage NCM cathode. Li||LiNi0.5Co0.2Mn0.3O2 full cells with middle-high active material areal loading (~7.5 mg cm-2) can stably cycle at 4.5 V. This work provides new insight into the design of polymer electrolytes for high-energy-density lithium metal batteries through the regulation of ion-dipole interactions.

3.
Angew Chem Int Ed Engl ; 63(10): e202318785, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38226740

RESUMEN

The cycle life of high-energy-density lithium-sulfur (Li-S) batteries is severely plagued by the incessant parasitic reactions between Li metal anodes and reactive Li polysulfides (LiPSs). Encapsulating Li-polysulfide electrolyte (EPSE) emerges as an effective electrolyte design to mitigate the parasitic reactions kinetically. Nevertheless, the rate performance of Li-S batteries with EPSE is synchronously suppressed. Herein, the sacrifice in rate performance by EPSE is circumvented while mitigating parasitic reactions by employing hexyl methyl ether (HME) as a co-solvent. The specific capacity of Li-S batteries with HME-based EPSE is nearly not decreased at 0.1 C compared with conventional ether electrolytes. With an ultrathin Li metal anode (50 µm) and a high-areal-loading sulfur cathode (4.4 mgS cm-2 ), a longer cycle life of 113 cycles was achieved in HME-based EPSE compared with that of 65 cycles in conventional ether electrolytes at 0.1 C. Furthermore, both high energy density of 387 Wh kg-1 and stable cycle life of 27 cycles were achieved in a Li-S pouch cell (2.7 Ah). This work inspires the feasibility of regulating the solvation structure of LiPSs in EPSE for Li-S batteries with balanced performance.

4.
Adv Mater ; : e2411197, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149771

RESUMEN

Lithium-sulfur (Li-S) batteries are widely regarded as one of the most promising next-generation high-energy-density energy storage devices. However, soluble lithium polysulfides (LiPSs) corrode Li metal and deteriorate the cycling stability of Li-S batteries. Understanding the reaction mechanism between LiPSs and Li metal anode is imperative. Herein, the reaction rate and products of LiPSs with Li metal anode, the composition and structure of the as-generated solid electrolyte interphase (SEI), and the mechanism of lithium nitrate (LiNO3) additives for inhibiting the corrosion reactions are systematically unveiled. Concretely, LiPSs react with Li metal anode more rapidly than Li salt and generate a Li2S-rich SEI. The Li2S-rich SEI is highly reactive with LiPSs, which exacerbates the formation of dendritic Li and the continuous corrosion of active Li. LiNO3 functions dominantly by modulating the solvation structure of LiPSs and inherently reducing the reactivity of LiPSs, rather than the conventional understanding of LiNO3 participating in the formation of SEI. This work reveals the reaction mechanism between LiPSs and Li metal anode and inspires rational regulating of the solvation structure of LiPSs for stabilizing Li metal anode in Li-S batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA