Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(14): 3741-3760.e30, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843831

RESUMEN

Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.


Asunto(s)
Elementos Transponibles de ADN , Humanos , Elementos Transponibles de ADN/genética , Ingeniería Genética/métodos , Genoma Humano , Animales , Evolución Molecular
2.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39179250

RESUMEN

Protein solubility plays a crucial role in various biotechnological, industrial, and biomedical applications. With the reduction in sequencing and gene synthesis costs, the adoption of high-throughput experimental screening coupled with tailored bioinformatic prediction has witnessed a rapidly growing trend for the development of novel functional enzymes of interest (EOI). High protein solubility rates are essential in this process and accurate prediction of solubility is a challenging task. As deep learning technology continues to evolve, attention-based protein language models (PLMs) can extract intrinsic information from protein sequences to a greater extent. Leveraging these models along with the increasing availability of protein solubility data inferred from structural database like the Protein Data Bank holds great potential to enhance the prediction of protein solubility. In this study, we curated an Updated Escherichia coli protein Solubility DataSet (UESolDS) and employed a combination of multiple PLMs and classification layers to predict protein solubility. The resulting best-performing model, named Protein Language Model-based protein Solubility prediction model (PLM_Sol), demonstrated significant improvements over previous reported models, achieving a notable 6.4% increase in accuracy, 9.0% increase in F1_score, and 11.1% increase in Matthews correlation coefficient score on the independent test set. Moreover, additional evaluation utilizing our in-house synthesized protein resource as test data, encompassing diverse types of enzymes, also showcased the good performance of PLM_Sol. Overall, PLM_Sol exhibited consistent and promising performance across both independent test set and experimental set, thereby making it well suited for facilitating large-scale EOI studies. PLM_Sol is available as a standalone program and as an easy-to-use model at https://zenodo.org/doi/10.5281/zenodo.10675340.


Asunto(s)
Bases de Datos de Proteínas , Proteínas de Escherichia coli , Solubilidad , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Benchmarking , Escherichia coli/genética , Escherichia coli/metabolismo , Biología Computacional/métodos , Aprendizaje Profundo
3.
Nature ; 580(7801): 147-150, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238924

RESUMEN

Long noncoding RNAs (lncRNAs) and promoter- or enhancer-associated unstable transcripts locate preferentially to chromatin, where some regulate chromatin structure, transcription and RNA processing1-13. Although several RNA sequences responsible for nuclear localization have been identified-such as repeats in the lncRNA Xist and Alu-like elements in long RNAs14-16-how lncRNAs as a class are enriched at chromatin remains unknown. Here we describe a random, mutagenesis-coupled, high-throughput method that we name 'RNA elements for subcellular localization by sequencing' (mutREL-seq). Using this method, we discovered an RNA motif that recognizes the U1 small nuclear ribonucleoprotein (snRNP) and is essential for the localization of reporter RNAs to chromatin. Across the genome, chromatin-bound lncRNAs are enriched with 5' splice sites and depleted of 3' splice sites, and exhibit high levels of U1 snRNA binding compared with cytoplasm-localized messenger RNAs. Acute depletion of U1 snRNA or of the U1 snRNP protein component SNRNP70 markedly reduces the chromatin association of hundreds of lncRNAs and unstable transcripts, without altering the overall transcription rate in cells. In addition, rapid degradation of SNRNP70 reduces the localization of both nascent and polyadenylated lncRNA transcripts to chromatin, and disrupts the nuclear and genome-wide localization of the lncRNA Malat1. Moreover, U1 snRNP interacts with transcriptionally engaged RNA polymerase II. These results show that U1 snRNP acts widely to tether and mobilize lncRNAs to chromatin in a transcription-dependent manner. Our findings have uncovered a previously unknown role of U1 snRNP beyond the processing of precursor mRNA, and provide molecular insight into how lncRNAs are recruited to regulatory sites to carry out chromatin-associated functions.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , ARN Largo no Codificante/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transcripción Genética , Animales , Línea Celular , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Mutagénesis , Motivos de Nucleótidos , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , ARN Largo no Codificante/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo
4.
Nucleic Acids Res ; 52(17): 10464-10489, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39189466

RESUMEN

Tandem repeat proteins (TRPs) are widely distributed and bind to a wide variety of ligands. DNA-binding TRPs such as zinc finger (ZNF) and transcription activator-like effector (TALE) play important roles in biology and biotechnology. In this study, we first conducted an extensive analysis of TRPs in public databases, and found that the enormous diversity of TRPs is largely unexplored. We then focused our efforts on identifying novel TRPs possessing DNA-binding capabilities. We established a protein language model for DNA-binding protein prediction (PLM-DBPPred), and predicted a large number of DNA-binding TRPs. A subset was then selected for experimental screening, leading to the identification of 11 novel DNA-binding TRPs, with six showing sequence specificity. Notably, members of the STAR (Short TALE-like Repeat proteins) family can be programmed to target specific 9 bp DNA sequences with high affinity. Leveraging this property, we generated artificial transcription factors using reprogrammed STAR proteins and achieved targeted activation of endogenous gene sets. Furthermore, the members of novel families such as MOON (Marine Organism-Originated DNA binding protein) and pTERF (prokaryotic mTERF-like protein) exhibit unique features and distinct DNA-binding characteristics, revealing interesting biological clues. Our study expands the diversity of DNA-binding TRPs, and demonstrates that a systematic approach greatly enhances the discovery of new biological insights and tools.


Asunto(s)
Proteínas de Unión al ADN , ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN/metabolismo , ADN/química , ADN/genética , Humanos , Unión Proteica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Dedos de Zinc , Efectores Tipo Activadores de la Transcripción/metabolismo , Efectores Tipo Activadores de la Transcripción/genética , Efectores Tipo Activadores de la Transcripción/química , Secuencias Repetidas en Tándem , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Sitios de Unión/genética
5.
J Hepatol ; 78(3): 627-642, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36462680

RESUMEN

BACKGROUND & AIMS: Alterations of multiple metabolites characterize distinct features of metabolic reprograming in hepatocellular carcinoma (HCC). However, the role of most metabolites, including propionyl-CoA (Pro-CoA), in metabolic reprogramming and hepatocarcinogenesis remains elusive. In this study, we aimed to dissect how Pro-CoA metabolism affects these processes. METHODS: TCGA data and HCC samples were used to analyze ALDH6A1-mediated Pro-CoA metabolism and its correlation with HCC. Multiple metabolites were assayed by targeted mass spectrometry. The role of ALDH6A1-generated Pro-CoA in HCC was evaluated in HCC cell lines as well as xenograft nude mouse models and primary liver cancer mouse models. Non-targeted metabolomic and targeted energy metabolomic analyses, as well as multiple biochemical assays, were performed. RESULTS: Decreases in Pro-CoA and its derivative propionyl-L-carnitine due to ALDH6A1 downregulation were tightly associated with HCC. Functionally, ALDH6A1-mediated Pro-CoA metabolism suppressed HCC proliferation in vitro and impaired hepatocarcinogenesis in mice. The aldehyde dehydrogenase activity was indispensable for this function of ALDH6A1, while Pro-CoA carboxylases antagonized ALDH6A1 function by eliminating Pro-CoA. Mechanistically, ALDH6A1 caused a signature enrichment of central carbon metabolism in cancer and impaired energy metabolism: ALDH6A1-generated Pro-CoA suppressed citrate synthase activity, which subsequently reduced tricarboxylic acid cycle flux, impaired mitochondrial respiration and membrane potential, and decreased ATP production. Moreover, Pro-CoA metabolism generated 2-methylcitric acid, which mimicked the inhibitory effect of Pro-CoA on citrate synthase and dampened mitochondrial respiration and HCC proliferation. CONCLUSIONS: The decline of ALDH6A1-mediated Pro-CoA metabolism contributes to metabolic remodeling and facilitates hepatocarcinogenesis. Pro-CoA, propionyl-L-carnitine and 2-methylcitric acid may serve as novel metabolic biomarkers for the diagnosis and treatment of HCC. Pro-CoA metabolism may provide potential targets for development of novel strategies against HCC. IMPACT AND IMPLICATIONS: Our study presents new insights on the role of propionyl-CoA metabolism in metabolic reprogramming and hepatocarcinogenesis. This work has uncovered potential diagnostic and predictive biomarkers, which could be used by physicians to improve clinical practice and may also serve as targets for the development of therapeutic strategies against HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Citrato (si)-Sintasa , Carnitina/metabolismo , Carnitina/farmacología
6.
Molecules ; 28(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687106

RESUMEN

The aim of this study was to investigate the effect of 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation on the functional, structural properties and proteomic information of arachin. The results showed that moderate oxidation improved the water/oil holding capacity of proteins and increased the emulsifying stability, while excessive oxidation increased the carbonyl content, reduced the thiol content, altered the structure and thermal stability, and reduced most of the physicochemical properties. Through LC-QE-MS analysis, it was observed that oxidation leads to various modifications in arachin, including carbamylation, oxidation, and reduction, among others. In addition, 15 differentially expressed proteins were identified. Through gene ontology (GO) analysis, these proteins primarily affected the cellular and metabolic processes in the biological process category. Further Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed that the "proteasome; protein processing in the endoplasmic reticulum (PPER)" pathway was the most significantly enriched signaling pathway during the oxidation process of arachin. In conclusion, this study demonstrated that AAPH-induced oxidation can alter the conformation and proteome of arachin, thereby affecting its corresponding functional properties. The findings of this study can potentially serve as a theoretical basis and foundational reference for the management of peanut processing and storage.


Asunto(s)
Proteínas de Plantas , Proteómica , Retículo Endoplásmico
7.
Molecules ; 26(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34361630

RESUMEN

In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 µg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 µg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 µg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 µg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.


Asunto(s)
Antioxidantes/química , Flavonoides/química , Magnoliopsida , Fenoles/química , Fitoquímicos/análisis , Extractos Vegetales/química , Magnoliopsida/química , Magnoliopsida/enzimología
8.
Anal Chem ; 92(10): 6925-6931, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32233357

RESUMEN

Magnetic levitation (MagLev) is a promising technology for density-based analysis and manipulation of diamagnetic objects of various physical forms. However, one major drawback is that MagLev can be performed only along the central axis (one-dimensional MagLev), thereby leading to (i) no knowledge about the magnetic field in regions other than the axial region, (ii) inability to handle objects of similar densities, because they are aggregated in the axial region, and (iii) objects that can be manipulated (e.g., separated or assembled) in only one single direction, that is, the axial direction. This work explores a novel approach called "axial-circular MagLev" to expand the operational space from one dimension to three dimensions, enabling substances to be stably levitated in both the axial and circular regions. Without noticeably sacrificing the total density measurement range, the highest sensitivity of the axial-circular MagLev device can be adjusted up to 1.5 × 104 mm/(g/cm3), approximately 115× better than that of the standard MagLev of two square magnets. Being able to fully utilize the operational space gives this approach greater maneuverability, as the three-dimensional self-assembly of controllable ring-shaped structures is demonstrated. Full space utilization extends the applicability of MagLev to bioengineering, pharmaceuticals, and advanced manufacturing.


Asunto(s)
Formaldehído/análisis , Polímeros/análisis , Polímeros/química , Vidrio/análisis , Campos Magnéticos
9.
Biochem Genet ; 58(2): 245-256, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31552564

RESUMEN

The common variants of the methylenetetrahydrofolate reductase (MTHFR) gene are related to the activity of the MTHFR enzyme and the concentrations of blood homocysteine (Hcy). This study was designed to investigate the associations of MTHFR in Chinese populations with early-onset coronary artery disease (EOCAD). The two common variants of the MTHFR gene were genotyped in 875 EOCAD patients and 956 controls using PCR, followed by direct sequencing of the PCR product. Serum levels of Hcy were measured using an automatic biochemistry analyzer. A significant association between the MTHFR-677C/T variant and the risk of EOCAD was detected in CC versus TT (odds ratio (OR) 1.456, 95% confidence interval (CI) 1.120-1.892), dominant genetic model (OR 1.266, 95% CI 1.027-1.546), and recessive genetic model (OR 1.306, 95% CI 1.040-1.639). Hcy was most abundant in TT genotype (18.31 ± 7.22 µmol/L), least abundant in CC genotype (11.37 ± 5.23 µmol/L), and detectable at intermediate levels in heterozygotes (15.25 ± 6.58 µmol/L). Elevated serum Hcy levels were an independent risk factor for EOCAD (ORadjust 1.431, 95% CI 1.135-1.763). Our findings indicated that the T allele of -677C/T MTHFR variant predisposes to high levels of Hcy, and that the T allele is an important risk factor for EOCAD in the Chinese population.


Asunto(s)
Enfermedad de la Arteria Coronaria , Predisposición Genética a la Enfermedad , Homocisteína/sangre , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Adulto , Estudios de Casos y Controles , China , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Factores de Riesgo
10.
Ecotoxicol Environ Saf ; 205: 111321, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979800

RESUMEN

Soil pollution with cadmium (Cd) has posed a threat to our food safety. And rice consumption is the main source of Cd intake in China. Rice intercropping with water spinach is an efficient way for crop production and phytoremediation in Cd-contaminated soil. However, few people work on the Cd remediation by a combination of the passivation and intercropping. In this study, two passivators (the Si-Ca-Mg ameliorant and the Fe-modified biochar with microbial inoculants) were used in the monoculture and intercropping systems to evaluate the potential of co-effect of passivators and cropping systems on the plant growth and Cd phytoremediation. Results showed that the highest rice biomass and rice yield were presented in the intercropping system with the passivator additions, however, relatively lower biomass was showed in water spinach due to the competition with rice. And more Cd accumulated in water spinach while lower Cd in that of different rice parts. The intercropping system with the addition of the Si-Ca-Mg ameliorant and the microbial Fe-modified biochar significantly reduced the Cd contents in brown rice by 58.86% and 63.83%, while notably enhanced the Cd accumulation of water spinach by 32.0% and 22.0%, compared with the monoculture without passivation, respectively. This probably due to the increased pH, the lowered Cd availability in soil, and the reduced TF and BCF values in rice plants with passivator applications. Collectively, this study indicated that rice-water spinach intercropping, especially with the passivator additions, may function as an effective way for Cd remediation and guarantee rice grain safety.


Asunto(s)
Biodegradación Ambiental , Cadmio/análisis , Oryza/fisiología , Spinacia oleracea/fisiología , Biomasa , Carbón Orgánico , China , Grano Comestible/química , Ipomoea , Oryza/crecimiento & desarrollo , Suelo/química , Contaminantes del Suelo/análisis , Agua
11.
Ecotoxicol Environ Saf ; 157: 388-394, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29649784

RESUMEN

Knowing the microbial compositions in fresh lakes is significant to explore the mechanisms of eutrophication and algal blooms. This study reported on the bacterial communities of the four adjacent fresh lakes at different trophic status by Illumina MiSeq Platform, which were Tangxun Lake (J1), Qingling Lake (J2), Huangjia Lake (J3) and Niushan Lake (J4) in Wuhan, China. J1 had the highest salinity and phosphorus. J2 was abundant in TC (Total Carbon)/TOC (Total Organic Carbon.), calcium and magnesium. J3 had the highest content of nitrogen, iron and pollution of heavy metals. High-throughput sequencing analysis of the 16S rRNA gene revealed that the eutrophic lakes (J1, J2 and J3) were dominated by Cyanobacteria (46.1% for J1, 40.8% for J2, 33.4% for J3) and the oligotrophic lake (J4) was dominated by Actinobacteria (34.2%). An increase of Cyanobacteria could inhibit the growth of Proteobacteria, Actinobacteria and Bacteroidetes. Functional inferences from 16S rRNA sequences suggested that J4 had more abundant bacteria with regard to substrate metabolism than J1, J2, and J3. Burkholderia and Fluviicola might be a suggestion of good water quality. The results demonstrated that the bacterial community could well reflect the water quality of the four lakes.


Asunto(s)
Lagos/química , Lagos/microbiología , Microbiología del Agua , Actinobacteria/aislamiento & purificación , Bacteroidetes/aislamiento & purificación , China , Cianobacterias/aislamiento & purificación , ADN Bacteriano/aislamiento & purificación , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos/microbiología , Fósforo/análisis , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/aislamiento & purificación , Salinidad , Synechococcus/aislamiento & purificación , Contaminantes del Agua/análisis , Calidad del Agua
12.
Med Sci Monit ; 23: 3080-3087, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28644824

RESUMEN

BACKGROUND Major depressive disorder (MDD) is a recurrent mental illness worldwide. The glutamatergic neurotransmission system is now a target for antidepressant therapy because it takes part in synaptic plasticity and cognition in physical condition and has a potential excitatory neurotoxicity in pathological conditions. Glial glutamate transporter EAAT2 performs 90% of Glu neurotransmission. Therefore, the aim of the study was to evaluate the effect of acupuncture on depressive behaviors and EAAT2 in CUMS. MATERIAL AND METHODS We randomly divided 56 male SD rats into a normal group, a model group, an acupuncture group, and a riluzole group. Rats in the model group, acupuncture group, and riluzole group underwent chronic unpredictable mild stress (CUMS) exposure for 21 days. The acupuncture group received electro-acupuncture stimulation on LI4 and LR3 for 5 continuous days per week for 4 weeks, and rats in the riluzole group received 4 mg/kg of riluzole orally (Sanofi, J20140092) for 4 weeks after undergoing CUMS stimulation. RESULTS Rats showed significantly increased sucrose consumption in the sucrose preference test paradigm, and showed elevated food intake and shortened latency in the novelty-suppressed feeding test paradigm after undergoing acupuncture therapy and riluzole treatment. The amelioration of depressive behavioral actions was consistent with increasing number of positive cells, protein, and mRNA expression of glial glutamate transporter EAAT2 in the hippocampus and PFC. CONCLUSIONS The results suggest that acupuncture and riluzole are both effective in improving sucrose consumption, latency, and food intake in CUMS rats. However, acupuncture appears to achieve an antidepressant effect later than riluzole does because it might need accumulated stimulation by enhancing EAAT2 expression. Enhance glial glutamate transporter EAAT2 in the hippocampus and PFC is a mechanism underlying the antidepressant effect of acupuncture.


Asunto(s)
Terapia por Acupuntura , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Conducta Animal , Trastorno Depresivo Mayor/terapia , Hipocampo/metabolismo , Neuroglía/metabolismo , Corteza Prefrontal/metabolismo , Estrés Psicológico/metabolismo , Animales , Enfermedad Crónica , Trastorno Depresivo Mayor/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Conducta Alimentaria , Masculino , Neuroglía/patología , Ratas Sprague-Dawley , Estrés Psicológico/patología , Sacarosa
14.
Front Public Health ; 12: 1230139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384888

RESUMEN

Objective: This study aimed to evaluate the impact of nonpharmaceutical interventions (NPIs) taken to combat COVID-19 on the prevalence of respiratory viruses (RVs) of acute respiratory infections (ARIs) in Shanghai. Methods: Samples from ARI patients were collected and screened for 17 respiratory viral pathogens using TagMan low density microfluidic chip technology in Shanghai from January 2019 to December 2020. Pathogen data were analyzed to assess changes in acute respiratory infections between 2019 and 2020. Results: A total of 2,744 patients were enrolled, including 1,710 and 1,034 in 2019 and 2020, respectively. The total detection rate of RVs decreased by 149.74% in 2020. However, detection rates for human respiratory syncytial virus B (RSVB), human coronavirus 229E (HCoV229E), human coronavirus NL63 (HCoVNL63), and human parainfluenza virus 3 (HPIV3) increased by 91.89, 58.33, 44.68 and 24.29%, in 2020. The increased positive rates of RSVB, HPIV3, resulted in more outpatients in 2020 than in 2019. IFV detection rates declined dramatically across gender, age groups, and seasons in 2020. Conclusion: NPIs taken to eliminate COVID-19 had an impact on the prevalence of respiratory viral pathogens, especially the IFVs in the early phases of the pandemic. Partial respiratory viruses resurged with the lifting of NPIs, leading to an increase in ARIs infection.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Humanos , Pandemias , COVID-19/epidemiología , Prevalencia , China/epidemiología , Infecciones del Sistema Respiratorio/epidemiología
15.
Cancer Res ; 84(15): 2417-2431, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38718297

RESUMEN

Hepatocellular carcinoma (HCC) is an aggressive disease that occurs predominantly in men. Estrogen elicits protective effects against HCC development. Elucidation of the estrogen-regulated biological processes that suppress HCC could lead to improved prevention and treatment strategies. Here, we performed transcriptomic analyses on mouse and human liver cancer and identified lecithin cholesterol acyltransferase (LCAT) as the most highly estrogen-upregulated gene and a biomarker of favorable prognosis. LCAT upregulation inhibited HCC in vitro and in vivo and mediated estrogen-induced suppression of HCC in an ESR1-dependent manner. LCAT facilitated high-density lipoprotein cholesterol production and uptake via the LDLR and SCARB1 pathways. Consistently, high HDL-C levels corresponded to a favorable prognosis in HCC patients. The enhanced HDL-C absorption induced by LCAT impaired SREBP2 maturation, which ultimately suppressed cholesterol biosynthesis and dampened HCC cell proliferation. HDL-C alone inhibited HCC growth comparably to the cholesterol-lowering drug lovastatin, and SREBF2 overexpression abolished the inhibitory activity of LCAT. Clinical observations and cross-analyses of multiple databases confirmed the correlation of elevated LCAT and HDL-C levels to reduced cholesterol synthesis and improved HCC patient prognosis. Furthermore, LCAT deficiency mimicked whereas LCAT overexpression abrogated the tumor growth-promoting effects of ovariectomy in HCC-bearing female mice. Most importantly, HDL-C and LCAT delayed the development of subcutaneous tumors in nude mice, and HDL-C synergized with lenvatinib to eradicate orthotopic liver tumors. Collectively, this study reveals that estrogen upregulates LCAT to maintain cholesterol homeostasis and to dampen hepatocarcinogenesis. LCAT and HDL-C represent potential prognostic and therapeutic biomarkers for targeting cholesterol homeostasis as a strategy for treating HCC. Significance: Estrogen mediates the sex differences in hepatocellular carcinoma development by reducing cholesterol biosynthesis through activation of an LCAT/HDL-C axis, providing strategies for improving liver cancer prevention, prognosis, and treatment.


Asunto(s)
Carcinoma Hepatocelular , Colesterol , Estrógenos , Homeostasis , Neoplasias Hepáticas , Fosfatidilcolina-Esterol O-Aciltransferasa , Animales , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ratones , Estrógenos/metabolismo , Colesterol/metabolismo , Femenino , Masculino , Proliferación Celular/efectos de los fármacos , Pronóstico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , HDL-Colesterol/metabolismo , HDL-Colesterol/sangre , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética
16.
Cell Stem Cell ; 31(5): 694-716.e11, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38631356

RESUMEN

Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.


Asunto(s)
Senescencia Celular , Homeostasis , ARN Nuclear , Animales , ARN Nuclear/metabolismo , Ratones , Diferenciación Celular , Linaje de la Célula , Núcleo Celular/metabolismo , Transcriptoma/genética , Humanos
17.
N Engl J Med ; 363(25): 2416-23, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21158658

RESUMEN

BACKGROUND: After the first monovalent 2009 pandemic influenza A (H1N1) vaccine became available in September 2009, Chinese officials conducted a mass vaccination program in Beijing. We evaluated the safety and effectiveness of the vaccine. METHODS: During a 5-day period in September 2009, a total of 95,244 children and adults received the PANFLU.1 vaccine (Sinovac Biotech), a monovalent split-virion vaccine of 15 µg of hemagglutinin antigen without adjuvant. We assessed adverse events after immunization through an enhanced passive-surveillance system and through active surveillance, using diary cards and telephone interviews. Active surveillance for neurologic diseases was implemented in hospitals citywide. To assess vaccine effectiveness, we compared the rates of reported laboratory-confirmed cases of 2009 H1N1 virus infection in students who received the vaccine with the rates in those who did not receive the vaccine, starting 2 weeks after the mass vaccination. RESULTS: As of December 31, 2009, adverse events were reported by 193 vaccine recipients. Through hospital-based active surveillance, 362 cases of incident neurologic diseases were identified within 10 weeks after the mass vaccination, including 27 cases of the Guillain-Barré syndrome. None of the neurologic conditions occurred among vaccine recipients. From 245 schools, 25,037 students participated in the mass vaccination and 244,091 did not. During the period from October 9 through November 15, 2009, the incidence of confirmed cases of 2009 H1N1 virus infection per 100,000 students was 35.9 (9 of 25,037) among vaccinated students and 281.4 (687 of 244,091) among unvaccinated students. Thus, the estimated vaccine effectiveness was 87.3% (95% confidence interval, 75.4 to 93.4). CONCLUSIONS: Among 95,244 children and adults in Beijing, the PANFLU.1 vaccine had a safety profile similar to those of seasonal influenza vaccines and appeared to be effective against confirmed H1N1 virus infection in school-age children. (Funded by the Beijing Municipal Health Bureau.).


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana/prevención & control , Vacunación Masiva , Adolescente , Adulto , Niño , Preescolar , China/epidemiología , Brotes de Enfermedades/prevención & control , Síndrome de Guillain-Barré/epidemiología , Humanos , Incidencia , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/epidemiología , Vigilancia de la Población , Riesgo , Resultado del Tratamiento , Adulto Joven
18.
Chemosphere ; 343: 140261, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748660

RESUMEN

With the rapid reduction of anthropogenic SO2 emissions, the critical driver of haze in China has shifted from being dominated by sulfate to alternating sulfate and nitrate. Haze induced by different driver species may differ in the chemical forms of water-soluble inorganic ions (WSIIs). The unique topography and high-emission industrial agglomeration of the Loess Plateau determine its severe local PM2.5 pollution and influence global weather patterns through the outward export of pollutants. PM2.5 samples were conducted in Pingyao, on the eastern Loess Plateau of China, in autumn and winter. The average mass of PM2.5 was 88.82 ± 57.37 µg/m3; sulfate, nitrate, and ammonium were the dominant component. The chemical form of the ion was dominated by (NH4)2SO4, NH4NO3, NaNO3 and KNO3 during the nitrate-driven (ND) haze, while (NH4)2SO4, NH4HSO4, NH4NO3, NaNO3 and KNO3 were predominant species during the sulfate-driven (SD) haze. Heterogeneous oxidation reactions dominated the mechanism of sulfate formation. Primary sulfate emissions or other generation pathways contributed to sulfate formation during the SD haze. The gas-phase homogeneous reaction of NO2 and NH3 dominates the nitrate generation during the ND haze. The heterogeneous reactions also played an essential role during the SD haze. Nitrate aerosol (42.30%) and coal and biomass combustion (23.23%) were the dominant sources of WSIIs during the ND haze. In comparison, nitrate aerosol (31.80%) and sulfate aerosol (25.08%) were considered the primary control direction during the SD haze. The chemical characteristics and sources of aerosols under various types of haze differ significantly, and knowledge gained from this investigation provides insight into the causes of heavy haze.

19.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37627500

RESUMEN

To assess the effects of microbial fermentation on Gynostemma pentaphyllum leaves (GPL), four probiotics were used to ferment GPL (FGPL) for 7 days. At different stages of fermentation, changes in the active components and biological activities of FGPL were determined. The findings suggest that short-term fermentation with probiotics can enhance both the content and bioactivity of active components in GPL. However, prolonged fermentation may lead to a decline in these aspects. Among them, the best effect was observed with SWFU D16 fermentation for 2 days. This significantly improved the total phenolic and total flavonoid content, antioxidant capacity, and inhibitory ability against α-glucosidase activity with an increase of 28%, 114.82%, 7.42%, and 31.8%, respectively. The high-performance liquid chromatography (HPLC) analysis results also supported this trend. Untargeted metabolomics analysis revealed metabolite changes between GPL and FGPL and the key metabolites associated with these functional activities. These key metabolites are mainly organic acids, flavonoids, carbohydrates, terpenoids, and other substances. KEGG analysis demonstrated that microbial metabolism in diverse environments and carbon metabolism were the most significantly enriched pathways. Among them, 3-(3-hydroxyphenyl) propanoic acid, d-glucose, gallic acid, gluconic acid, l-lactic acid, and l-malic acid were mostly involved in the microbial metabolism of diverse environmental pathways. In contrast, D-glucose, gluconic acid, and l-malic acid were mainly related to the carbon metabolism pathway. This study revealed the positive effect of probiotic fermentation on GPL and its potential metabolism mechanism, which could provide supporting data for further research.

20.
Sci Total Environ ; 904: 166857, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678532

RESUMEN

Despite the significant reduction in atmospheric pollutant levels during the COVID-19 lockdown, the presence of haze in the North China Plain remained a frequent occurrence owing to the enhanced formation of secondary inorganic aerosols under ammonia-rich conditions. Quantifying the increase or decrease in atmospheric ammonia (NH3) emissions is a key step in exploring the causes of the COVID-19 haze. Historic activity levels of anthropogenic NH3 emissions were collected through various yearbooks and studies, an anthropogenic NH3 emission inventory for Henan Province for 2020 was established, and the variations in NH3 emissions from different sources between COVID-19 and non-COVID-19 years were investigated. The validity of the NH3 emission inventory was further evaluated through comparison with previous studies and uncertainty analysis from Monte Carlo simulations. Results showed that the total NH3 emissions gradually increased from north-west to south-east, totalling 751.80 kt in 2020. Compared to the non-COVID-19 year of 2019, the total NH3 emissions were reduced by approximately 4 %, with traffic sources, waste disposal and biomass burning serving as the sources with the top three largest reductions, approximately 33 %, 9.97 % and 6.19 %, respectively. Emissions from humans and fuel combustion slightly increased. Meanwhile, livestock waste emissions decreased by only 3.72 %, and other agricultural emissions experienced insignificant change. Non-agricultural sources were more severely influenced by the COVID-19 lockdown than agricultural sources; nevertheless, agricultural activities contributed 84.35 % of the total NH3 emissions in 2020. These results show that haze treatment should be focused on reducing NH3, particularly controlling agricultural NH3 emissions.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Humanos , Amoníaco/análisis , Contaminantes Atmosféricos/análisis , Pandemias , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , China/epidemiología , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA