Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.093
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(18): 5010-5028.e24, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094570

RESUMEN

Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.


Asunto(s)
Replicación del ADN , Epigénesis Genética , Heterocromatina , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Chaperonas de Histonas/metabolismo , Chaperonas Moleculares/metabolismo , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética
2.
Cell ; 174(4): 818-830.e11, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30057113

RESUMEN

Rtt109 is a unique histone acetyltransferase acetylating histone H3 lysine 56 (H3K56), a modification critical for DNA replication-coupled nucleosome assembly and genome stability. In cells, histone chaperone Asf1 is essential for H3K56 acetylation, yet the mechanisms for H3K56 specificity and Asf1 requirement remain unknown. We have determined the crystal structure of the Rtt109-Asf1-H3-H4 complex and found that unwinding of histone H3 αN, where K56 is normally located, and stabilization of the very C-terminal ß strand of histone H4 by Asf1 are prerequisites for H3K56 acetylation. Unexpectedly, an interaction between Rtt109 and the central helix of histone H3 is also required. The observed multiprotein, multisite substrate recognition mechanism among histone modification enzymes provides mechanistic understandings of Rtt109 and Asf1 in H3K56 acetylation, as well as valuable insights into substrate recognition by histone modification enzymes in general.


Asunto(s)
Aspergillus fumigatus/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/química , Lisina/metabolismo , Chaperonas Moleculares/metabolismo , Acetilación , Secuencia de Aminoácidos , Histona Acetiltransferasas/química , Histonas/metabolismo , Lisina/química , Chaperonas Moleculares/química , Conformación Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia , Especificidad por Sustrato
3.
Mol Cell ; 84(17): 3223-3236.e4, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094566

RESUMEN

Chromatin-based epigenetic memory relies on the symmetric distribution of parental histones to newly synthesized daughter DNA strands, aided by histone chaperones within the DNA replication machinery. However, the mechanism of parental histone transfer remains elusive. Here, we reveal that in fission yeast, the replisome protein Mrc1 plays a crucial role in promoting the transfer of parental histone H3-H4 to the lagging strand, ensuring proper heterochromatin inheritance. In addition, Mrc1 facilitates the interaction between Mcm2 and DNA polymerase alpha, two histone-binding proteins critical for parental histone transfer. Furthermore, Mrc1's involvement in parental histone transfer and epigenetic inheritance is independent of its known functions in DNA replication checkpoint activation and replisome speed control. Instead, Mrc1 interacts with Mcm2 outside of its histone-binding region, creating a physical barrier to separate parental histone transfer pathways. These findings unveil Mrc1 as a key player within the replisome, coordinating parental histone segregation to regulate epigenetic inheritance.


Asunto(s)
Replicación del ADN , Epigénesis Genética , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Unión Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
4.
Genes Dev ; 38(3-4): 189-204, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38479839

RESUMEN

Chromatin-based epigenetic memory relies on the accurate distribution of parental histone H3-H4 tetramers to newly replicated DNA strands. Mcm2, a subunit of the replicative helicase, and Dpb3/4, subunits of DNA polymerase ε, govern parental histone H3-H4 deposition to the lagging and leading strands, respectively. However, their contribution to epigenetic inheritance remains controversial. Here, using fission yeast heterochromatin inheritance systems that eliminate interference from initiation pathways, we show that a Mcm2 histone binding mutation severely disrupts heterochromatin inheritance, while mutations in Dpb3/4 cause only moderate defects. Surprisingly, simultaneous mutations of Mcm2 and Dpb3/4 stabilize heterochromatin inheritance. eSPAN (enrichment and sequencing of protein-associated nascent DNA) analyses confirmed the conservation of Mcm2 and Dpb3/4 functions in parental histone H3-H4 segregation, with their combined absence showing a more symmetric distribution of parental histone H3-H4 than either single mutation alone. Furthermore, the FACT histone chaperone regulates parental histone transfer to both strands and collaborates with Mcm2 and Dpb3/4 to maintain parental histone H3-H4 density and faithful heterochromatin inheritance. These results underscore the importance of both symmetric distribution of parental histones and their density at daughter strands for epigenetic inheritance and unveil distinctive properties of parental histone chaperones during DNA replication.


Asunto(s)
Histonas , Schizosaccharomyces , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Heterocromatina/genética , Replicación del ADN/genética , ADN/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Epigénesis Genética
5.
Mol Cell ; 83(7): 1024-1026, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028413

RESUMEN

Histone chaperones participate in the biogenesis, transportation, and deposition of histones. They contribute to processes impacted by nucleosomes including DNA replication, transcription, and epigenetic inheritance. In this issue, Carraro et al.1 reveal an interconnected chaperone network and a surprising function of histone chaperone DAXX in de novo deposition of H3.3K9me3.


Asunto(s)
Chaperonas de Histonas , Histonas , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Chaperonas Moleculares/genética , Replicación del ADN
6.
Genes Dev ; 37(3-4): 72-73, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36813532

RESUMEN

DNA replication is complex and highly regulated, and DNA replication errors can lead to human diseases such as cancer. DNA polymerase ε (polε) is a key player in DNA replication and contains a large subunit called POLE, which possesses both a DNA polymerase domain and a 3'-5' exonuclease domain (EXO). Mutations at the EXO domain and other missense mutations on POLE with unknown significance have been detected in a variety of human cancers. Based on cancer genome databases, Meng and colleagues (pp. 74-79) previously identified several missense mutations in POPS (pol2 family-specific catalytic core peripheral subdomain), and mutations at the conserved residues of yeast Pol2 (pol2-REL) showed reduced DNA synthesis and growth. In this issue of Genes & Development, Meng and colleagues (pp. 74-79) found unexpectedly that mutations at the EXO domain rescue the growth defects of pol2-REL. They further discovered that EXO-mediated polymerase backtracking impedes forward movement of the enzyme when POPS is defective, revealing a novel interplay between the EXO domain and POPS of Pol2 for efficient DNA synthesis. Additional molecular insight into this interplay will likely inform the impact of cancer-associated mutations found in both the EXO domain and POPS on tumorigenesis and uncover future novel therapeutic strategies.


Asunto(s)
ADN Polimerasa II , Replicación del ADN , Neoplasias , Saccharomyces cerevisiae , Humanos , ADN/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Replicación del ADN/genética , Exonucleasas/metabolismo , Mutación , Neoplasias/genética , Saccharomyces cerevisiae/metabolismo
7.
Mol Cell ; 82(20): 3901-3918.e7, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36206767

RESUMEN

How cancer-associated chromatin abnormalities shape tumor-immune interaction remains incompletely understood. Recent studies have linked DNA hypomethylation and de-repression of retrotransposons to anti-tumor immunity through the induction of interferon response. Here, we report that inactivation of the histone H3K36 methyltransferase NSD1, which is frequently found in squamous cell carcinomas (SCCs) and induces DNA hypomethylation, unexpectedly results in diminished tumor immune infiltration. In syngeneic and genetically engineered mouse models of head and neck SCCs, NSD1-deficient tumors exhibit immune exclusion and reduced interferon response despite high retrotransposon expression. Mechanistically, NSD1 loss results in silencing of innate immunity genes, including the type III interferon receptor IFNLR1, through depletion of H3K36 di-methylation (H3K36me2) and gain of H3K27 tri-methylation (H3K27me3). Inhibition of EZH2 restores immune infiltration and impairs the growth of Nsd1-mutant tumors. Thus, our work uncovers a druggable chromatin cross talk that regulates the viral mimicry response and enables immune evasion of DNA hypomethylated tumors.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Histona Metiltransferasas , Escape del Tumor , Animales , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Cromatina , Metilación de ADN , Neoplasias de Cabeza y Cuello/genética , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Interferones/genética , Proteínas Nucleares/metabolismo , Receptores de Interferón/genética , Retroelementos , Escape del Tumor/genética
8.
Nature ; 623(7987): 643-651, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938774

RESUMEN

In eukaryotes, repetitive DNA sequences are transcriptionally silenced through histone H3 lysine 9 trimethylation (H3K9me3). Loss of silencing of the repeat elements leads to genome instability and human diseases, including cancer and ageing1-3. Although the role of H3K9me3 in the establishment and maintenance of heterochromatin silencing has been extensively studied4-6, the pattern and mechanism that underlie the partitioning of parental H3K9me3 at replicating DNA strands are unknown. Here we report that H3K9me3 is preferentially transferred onto the leading strands of replication forks, which occurs predominantly at long interspersed nuclear element (LINE) retrotransposons (also known as LINE-1s or L1s) that are theoretically transcribed in the head-on direction with replication fork movement. Mechanistically, the human silencing hub (HUSH) complex interacts with the leading-strand DNA polymerase Pol ε and contributes to the asymmetric segregation of H3K9me3. Cells deficient in Pol ε subunits (POLE3 and POLE4) or the HUSH complex (MPP8 and TASOR) show compromised H3K9me3 asymmetry and increased LINE expression. Similar results were obtained in cells expressing a MPP8 mutant defective in H3K9me3 binding and in TASOR mutants with reduced interactions with Pol ε. These results reveal an unexpected mechanism whereby the HUSH complex functions with Pol ε to promote asymmetric H3K9me3 distribution at head-on LINEs to suppress their expression in S phase.


Asunto(s)
Silenciador del Gen , Histonas , Elementos de Nucleótido Esparcido Largo , Lisina , Fase S , Humanos , Replicación del ADN , Histonas/química , Histonas/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Lisina/metabolismo , Metilación
9.
Cell ; 155(4): 817-29, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209620

RESUMEN

Nucleosome assembly following DNA replication and gene transcription is important to maintain genome stability and epigenetic information. Newly synthesized histones H3-H4 first bind histone chaperone Asf1 and are then transferred to other chaperones for nucleosome assembly. However, it is unknown how H3-H4 is transferred from the Asf1-H3-H4 complex to other chaperones because Asf1 binds H3-H4 with high affinity. Here, we show that yeast Rtt101(Mms1) E3 ubiquitin ligase preferentially binds and ubiquitylates new histone H3 acetylated at lysine 56. Inactivation of Rtt101 or mutating H3 lysine residues ubiquitylated by the Rtt101(Mms1) ligase impairs nucleosome assembly and promotes Asf1-H3 interactions. Similar phenotypes occur in human cells in which the ortholog of Rtt101(Mms1), Cul4A(DDB1), is depleted. These results indicate that the transfer of H3-H4 from the Asf1-H3-H4 complex to other histone chaperones is regulated by a conserved E3 ligase and provide evidence for crosstalk between histone acetylation and ubiquitylation in nucleosome assembly.


Asunto(s)
Proteínas Cullin/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Acetilación , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/química , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Ubiquitinación
10.
Plant Cell ; 36(8): 2873-2892, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38723594

RESUMEN

Grain size and weight are crucial yield-related traits in rice (Oryza sativa). Although certain key genes associated with rice grain size and weight have been successfully cloned, the molecular mechanisms underlying grain size and weight regulation remain elusive. Here, we identified a molecular pathway regulating grain size and weight in rice involving the MPS ONE BINDER KINASE ACTIVATOR-LIKE 1A-SERINE/THREONINE-PROTEIN KINASE 38-CYCLIN C (OsMOB1A-OsSTK38-OsCycC) module. OsSTK38 is a nuclear Dbf2-related kinase that positively regulates grain size and weight by coordinating cell proliferation and expansion in the spikelet hull. OsMOB1A interacts with and enhances the autophosphorylation of OsSTK38. Specifically, the critical role of the OsSTK38 S322 site in its kinase activity is highlighted. Furthermore, OsCycC, a component of the Mediator complex, was identified as a substrate of OsSTK38, with enhancement by OsMOB1A. Notably, OsSTK38 phosphorylates the T33 site of OsCycC. The phosphorylation of OsCycC by OsSTK38 influenced its interaction with the transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (OsKNAT7). Genetic analysis confirmed that OsMOB1A, OsSTK38, and OsCycC function in a common pathway to regulate grain size and weight. Taken together, our findings revealed a connection between the Hippo signaling pathway and the cyclin-dependent kinase module in eukaryotes. Moreover, they provide insights into the molecular mechanisms linked to yield-related traits and propose innovative breeding strategies for high-yielding varieties.


Asunto(s)
Ciclina C , Grano Comestible , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/enzimología , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ciclina C/metabolismo , Ciclina C/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Plantas Modificadas Genéticamente
11.
EMBO J ; 41(5): e109783, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102600

RESUMEN

Nucleosomes are disrupted transiently during eukaryotic transcription, yet the displaced histones must be retained and redeposited onto DNA, to preserve nucleosome density and associated histone modifications. Here, we show that the essential Spt5 processivity factor of RNA polymerase II (Pol II) plays a direct role in this process in budding yeast. Functional orthologues of eukaryotic Spt5 are present in archaea and bacteria, reflecting its universal role in RNA polymerase processivity. However, eukaryotic Spt5 is unique in having an acidic amino terminal tail (Spt5N) that is sandwiched between the downstream nucleosome and the upstream DNA that emerges from Pol II. We show that Spt5N contains a histone-binding motif that is required for viability in yeast cells and prevents loss of nucleosomal histones within actively transcribed regions. These findings indicate that eukaryotic Spt5 combines two essential activities, which together couple processive transcription to the efficient capture and re-deposition of nucleosomal histones.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Histonas/genética , ARN Polimerasa II/genética , Transcripción Genética/genética , Factores de Elongación Transcripcional/genética , Nucleosomas/genética , Unión Proteica/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39007592

RESUMEN

High-throughput DNA sequencing technologies decode tremendous amounts of microbial protein-coding gene sequences. However, accurately assigning protein functions to novel gene sequences remain a challenge. To this end, we developed FunGeneTyper, an extensible framework with two new deep learning models (i.e., FunTrans and FunRep), structured databases, and supporting resources for achieving highly accurate (Accuracy > 0.99, F1-score > 0.97) and fine-grained classification of antibiotic resistance genes (ARGs) and virulence factor genes. Using an experimentally confirmed dataset of ARGs comprising remote homologous sequences as the test set, our framework achieves by-far-the-best performance in the discovery of new ARGs from human gut (F1-score: 0.6948), wastewater (0.6072), and soil (0.5445) microbiomes, beating the state-of-the-art bioinformatics tools and sequence alignment-based (F1-score: 0.0556-0.5065) and domain-based (F1-score: 0.2630-0.5224) annotation approaches. Furthermore, our framework is implemented as a lightweight, privacy-preserving, and plug-and-play neural network module, facilitating its versatility and accessibility to developers and users worldwide. We anticipate widespread utilization of FunGeneTyper (https://github.com/emblab-westlake/FunGeneTyper) for precise classification of protein-coding gene functions and the discovery of numerous valuable enzymes. This advancement will have a significant impact on various fields, including microbiome research, biotechnology, metagenomics, and bioinformatics.


Asunto(s)
Aprendizaje Profundo , Humanos , Biología Computacional/métodos , Microbiota/genética , Proteínas Bacterianas/genética , Farmacorresistencia Microbiana/genética , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Factores de Virulencia/genética
13.
Plant Cell ; 35(8): 2848-2870, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37154077

RESUMEN

C3 and C4 grasses directly and indirectly provide the vast majority of calories to the human diet, yet our understanding of the molecular mechanisms driving photosynthetic productivity in grasses is largely unexplored. Ground meristem cells divide to form mesophyll or vascular initial cells early in leaf development in C3 and C4 grasses. Here we define a genetic circuit composed of SHORT ROOT (SHR), INDETERMINATE DOMAIN (IDD), and PIN-FORMED (PIN) family members that specifies vascular identify and ground cell proliferation in leaves of both C3 and C4 grasses. Ectopic expression and loss-of-function mutant studies of SHR paralogs in the C3 plant Oryza sativa (rice) and the C4 plant Setaria viridis (green millet) revealed the roles of these genes in both minor vein formation and ground cell differentiation. Genetic and in vitro studies further suggested that SHR regulates this process through its interactions with IDD12 and 13. We also revealed direct interactions of these IDD proteins with a putative regulatory element within the auxin transporter gene PIN5c. Collectively, these findings indicate that a SHR-IDD regulatory circuit mediates auxin transport by negatively regulating PIN expression to modulate minor vein patterning in the grasses.


Asunto(s)
Oryza , Setaria (Planta) , Humanos , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Setaria (Planta)/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas/genética
14.
Mol Cell ; 72(1): 140-151.e3, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30244834

RESUMEN

Although essential for epigenetic inheritance, the transfer of parental histone (H3-H4)2 tetramers that contain epigenetic modifications to replicating DNA strands is poorly understood. Here, we show that the Mcm2-Ctf4-Polα axis facilitates the transfer of parental (H3-H4)2 tetramers to lagging-strand DNA at replication forks. Mutating the conserved histone-binding domain of the Mcm2 subunit of the CMG (Cdc45-MCM-GINS) DNA helicase, which translocates along the leading-strand template, results in a marked enrichment of parental (H3-H4)2 on leading strand, due to the impairment of the transfer of parental (H3-H4)2 to lagging strands. Similar effects are observed in Ctf4 and Polα primase mutants that disrupt the connection of the CMG helicase to Polα that resides on lagging-strand template. Our results support a model whereby parental (H3-H4)2 complexes displaced from nucleosomes by DNA unwinding at replication forks are transferred by the CMG-Ctf4-Polα complex to lagging-strand DNA for nucleosome assembly at the original location.


Asunto(s)
ADN Polimerasa III/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , Epigénesis Genética , Histonas/genética , Complejos Multiproteicos/genética , Nucleosomas/genética , Unión Proteica , Saccharomyces cerevisiae/genética
15.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38811165

RESUMEN

The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.


Asunto(s)
Ritmo alfa , Sensibilidad de Contraste , Estimulación Transcraneal de Corriente Directa , Humanos , Femenino , Masculino , Adulto , Ritmo alfa/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Sensibilidad de Contraste/fisiología , Adulto Joven , Método Doble Ciego , Electroencefalografía/métodos , Estimulación Luminosa/métodos , Percepción Visual/fisiología , Fatiga Mental/fisiopatología
16.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38244565

RESUMEN

Impairments in working memory (WM) are evident in both clinically diagnosed patients with mild cognitive decline and older adults at risk, as indicated by lower scores on neuropsychological tests. Examining the WM-related neural signatures in at-risk older adults becomes essential for timely intervention. WM functioning relies on dynamic brain activities, particularly within the frontoparietal system. However, it remains unclear whether the cognitive decline would be reflected in the decreased dynamic reconfiguration of brain coactivation states during WM tasks. We enrolled 47 older adults and assessed their cognitive function using the Montreal Cognitive Assessment. The temporal dynamics of brain coactivations during a WM task were investigated through graph-based time-frame modularity analysis. Four primary recurring states emerged: two task-positive states with positive activity in the frontoparietal system (dorsal attention and central executive); two task-negative states with positive activity in the default mode network accompanied by negative activity in the frontoparietal networks. Heightened WM load was associated with increased flexibility of the frontoparietal networks, but the cognitive decline was correlated with reduced capacity for neuroplastic changes in response to increased task demands. These findings advance our understanding of aberrant brain reconfiguration linked to cognitive decline, potentially aiding early identification of at-risk individuals.


Asunto(s)
Disfunción Cognitiva , Memoria a Corto Plazo , Humanos , Anciano , Memoria a Corto Plazo/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cognición/fisiología , Disfunción Cognitiva/diagnóstico por imagen , Mapeo Encefálico , Pruebas Neuropsicológicas , Imagen por Resonancia Magnética
17.
Mol Cell ; 68(2): 446-455.e3, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29033319

RESUMEN

The checkpoint kinase Rad53 is activated during replication stress to prevent fork collapse, an essential but poorly understood process. Here we show that Rad53 couples leading- and lagging-strand synthesis under replication stress. In rad53-1 cells stressed by dNTP depletion, the replicative DNA helicase, MCM, and the leading-strand DNA polymerase, Pol ε, move beyond the site of DNA synthesis, likely unwinding template DNA. Remarkably, DNA synthesis progresses further along the lagging strand than the leading strand, resulting in the exposure of long stretches of single-stranded leading-strand template. The asymmetric DNA synthesis in rad53-1 cells is suppressed by elevated levels of dNTPs in vivo, and the activity of Pol ε is compromised more than lagging-strand polymerase Pol δ at low dNTP concentrations in vitro. Therefore, we propose that Rad53 prevents the generation of excessive ssDNA under replication stress by coordinating DNA unwinding with synthesis of both strands.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/metabolismo , ADN Polimerasa III/metabolismo , ADN Polimerasa II/metabolismo , Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/genética , ADN Polimerasa II/genética , ADN Polimerasa III/genética , ADN de Hongos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Mol Cell ; 65(2): 272-284, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28107649

RESUMEN

The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Elementos de Facilitación Genéticos , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas , Proteína de Replicación A/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Sitios de Unión , Proteínas de Ciclo Celular/genética , Cromatina/genética , ADN/genética , Proteínas de Unión al ADN/genética , Fase G1 , Células HEK293 , Células HeLa , Chaperonas de Histonas/genética , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Proteína de Replicación A/genética , Factores de Transcripción/genética , Transfección
19.
J Mol Cell Cardiol ; 188: 38-51, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38224851

RESUMEN

RNA binding proteins have been shown to regulate heart development and cardiac diseases. However, the detailed molecular mechanisms is not known. In this study, we identified Wilms' tumor 1-associating protein (WTAP, a key regulatory protein of the m6A RNA methyltransferase complex) as a key regulator of heart function and cardiac diseases. WTAP is associated with heart development, and its expression is downregulated in both human and mice with heart failure. Cardiomyocyte-specific knockout of Wtap (Wtap-CKO) induces dilated cardiomyopathy, heart failure and neonatal death. Although WTAP deficiency in the heart decreases METTL3 (methyltransferase-like 3) protein levels, cardiomyocyte-specific overexpression of Mettl3 in Wtap-CKO mice does not rescue the phenotypes of Wtap-CKO mice. Instead, WTAP deficiency in the heart decreases chromatin accessibility in the promoter regions of Mef2a (myocyte enhancer factor-2α) and Mef2c, leading to reduced mRNA and protein levels of these genes and lower expression of their target genes. Conversely, WTAP directly binds to the promoter of the Mef2c gene and increases its promoter luciferase activity and expression. These data demonstrate that WTAP plays a key role in heart development and cardiac function by maintaining the chromatin accessibility of cardiomyocyte specific genes.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Animales , Humanos , Ratones , Cardiomiopatía Dilatada/genética , Cromatina , Regulación hacia Abajo , Insuficiencia Cardíaca/genética , Metiltransferasas , Miocitos Cardíacos
20.
J Am Chem Soc ; 146(36): 24956-24965, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39102644

RESUMEN

Adsorptive separation of Xe and Kr is an industrially promising but challenging process because of their identical shape and similar physicochemical properties. Herein, we demonstrate a strategy through rationally designing the linkers of anionic functional ultramicroporous materials (FUMs) to finely regulate the pore chemistry and architecture, which creates unique stepped channels incorporating dense polar nanotraps to generate a larger effective pore space and enables dense packing of Xe. A new hydrolytically stable FUM (ZUL-530) was prepared, which for the first time achieves a Xe packing density exceeding the liquid Xe density at atmospheric conditions in metal-organic frameworks (MOFs) (based on experimental data), resulting in both excellent Xe uptake (2.55 mmol g-1 at 0.2 bar) and high IAST selectivity (20.5). GCMC and DFT-D calculations reveal the essential role of the stepped traps in the dense packing of Xe. Breakthrough experiments demonstrate remarkable productivities of both high-purity Kr (6.70 mmol g-1) and Xe (1.78 mmol g-1) for the Xe/Kr (20:80) mixture. In a model nuclear industry exhaust gas, ZUL-530 exhibits a top-class Xe dynamic capacity (28.8 mmol kg-1) for trace Xe, which proves it is one of the best candidates for Xe/Kr separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA