RESUMEN
Liquid-liquid phase separation (LLPS) is a crucial process for the formation of biomolecular condensates such as coacervate droplets, P-bodies and stress granules, which play critical roles in many physiological and pathological processes. Increasing studies have shown that not only proteins but also RNAs play a critical role in LLPS. To host LLPS-associated RNAs, we previously developed a database named 'RPS' in 2021. In this study, we present an updated version RPS 2.0 (https://rps.renlab.cn/) to incorporate the newly generated data and to host new LLPS-associated RNAs driven by post-transcriptional regulatory mechanisms. Currently, RPS 2.0 hosts 171 301 entries of LLPS-associated RNAs in 24 different biomolecular condensates with four evidence types, including 'Reviewed', 'High-throughput (LLPS enrichment)', 'High-throughput (LLPS perturbation)' and 'Predicted', and five event types, including 'Expression', 'APA', 'AS', 'A-to-I' and 'Modification'. Additionally, extensive annotations of LLPS-associated RNAs are provided in RPS 2.0, including RNA sequence and structure features, RNA-protein/RNA-RNA interactions, RNA modifications, as well as diseases related annotations. We expect that RPS 2.0 will further promote research of LLPS-associated RNAs and deepen our understanding of the biological functions and regulatory mechanisms of LLPS.
RESUMEN
RNA modification is a dynamic and reversible process regulated by a series of writers, erasers and readers (WERs). Abnormal changes of WERs will disrupt the RNA modification homeostasis of their target genes, leading to the dysregulation of RNA metabolisms such as RNA stability and translation, and consequently to diseases such as cancer. A public repository hosting the regulatory relationships between WERs and their target genes will help in understanding the roles of RNA modifications in various physiological and pathological conditions. Previously, we developed a database named 'm6A2Target' to host targets of WERs in m6A, one of the most prevalent RNA modifications in eukaryotic cells. To host all RNA modification (RM)-related WER-target associations, we hereby present an updated database, named 'RM2Target' (http://rm2target.canceromics.org/). In this update, RM2Target encompasses 1 619 653 WER-target associations for nine RNA modifications in human and mouse, including m6A, m6Am, m5C, m5U, m1A, m7G, pseudouridine, 2'-O-Me and A-to-I. Extensive annotations of target genes are available in RM2Target, including but not limited to basic gene information, RNA modifications, RNA-RNA/RNA-protein interactions and related diseases. Altogether, we expect that RM2Target will facilitate further downstream functional and mechanistic studies in the field of RNA modification research.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , Procesamiento Postranscripcional del ARN , Animales , Humanos , Ratones , Adenosina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , ARN/química , ARN/metabolismo , Proteínas de Unión al ARNRESUMEN
The synthesis of 12α-hydroxylated bile acids (12HBAs) and non-12α-hydroxylated bile acids (non-12HBAs) occurs via classical and alternative pathways, respectively. The composition of these BAs is a crucial index for pathophysiologic assessment. However, accurately differentiating 12HBAs and non-12HBAs is highly challenging due to the limited standard substances. Here, we innovatively introduce 12α-hydroxysteroid dehydrogenase (12α-HSDH) as an enzymatic probe synthesized by heterologous expression in Escherichia coli, which can specifically and efficiently convert 12HBAs in vitro under mild conditions. Coupled to the conversion rate determined by liquid chromatography-high resolution mass spectrometry (LC-HRMS), this enzymatic probe allows for the straightforward distinguishing of 210 12HBAs and 312 non-12HBAs from complex biological matrices, resulting in a BAs profile with a well-defined hydroxyl feature at the C12 site. Notably, this enzyme-driven LC-HRMS approach can be extended to any molecule with explicit knowledge of enzymatic transformation. We demonstrate the practicality of this BAs profile in terms of both revealing cross-species BAs heterogeneity and monitoring the alterations of 12HBAs and non-12HBAs under asthma disease. We envisage that this work will provide a novel pattern to recognize the shift of BA metabolism from classical to alternative synthesis pathways in different pathophysiological states, thereby offering valuable insights into the management of related diseases.
Asunto(s)
Ácidos y Sales Biliares , Espectrometría de Masas , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/análisis , Cromatografía Liquida , Animales , Escherichia coli/enzimología , Escherichia coli/metabolismo , Humanos , RatonesRESUMEN
Mitochondrial complex activity controls a multitude of physiological processes by regulating the cellular metabolism. Current methods for evaluating mitochondrial complex activity mainly focus on single metabolic reactions within mitochondria. These methods often require fresh samples in large quantities for mitochondria purification or intact mitochondrial membranes for real-time monitoring. Confronting these limitations, we shifted the analytical perspective toward interactive metabolic networks at the whole-cell level to reflect mitochondrial complex activity. To this end, we compiled a panel of mitochondrial respiratory chain-mapped metabolites (MRCMs), whose perturbations theoretically provide an overall reflection on mitochondrial complex activity. By introducing N-dimethyl-p-phenylenediamine and N-methyl-p-phenylenediamine as a pair of mass spectrometry probes, an ultraperformance liquid chromatography-tandem mass spectrometry method with high sensitivity (LLOQ as low as 0.2 fmol) was developed to obtain accurate quantitative data of MRCMs. Machine learning was then combined to capture the relationship between MRCMs and mitochondrial complex activity. Using Complex I as a proof-of-concept, we identified NADH, alanine, and phosphoenolpyruvate as metabolites associated with Complex I activity based on the whole-cell level. The effectiveness of using their concentrations to reflect Complex I activity was further validated in external data sets. Hence, by capturing the relationship between metabolites and mitochondrial complex activity at the whole-cell level, this study explores a novel analytical paradigm for the interrogation of mitochondrial complex activity, offering a favorable complement to existing methods particularly when sample quantities, type, and treatment timeliness pose challenges. More importantly, it shifts the focus from individual metabolic reactions within mitochondria to a more comprehensive view of an interactive metabolic network, which should serve as a promising direction for future research into the functional architecture between mitochondrial complexes and metabolites.
RESUMEN
BACKGROUND: The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS: In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION: The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.
Asunto(s)
Apiaceae , Sanicula , Filogenia , Plastidios , CloroplastosRESUMEN
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) with coexistent emphysema, termed combined pulmonary fibrosis and emphysema (CPFE) may associate with reduced forced vital capacity (FVC) declines compared to non-CPFE IPF patients. We examined associations between mortality and functional measures of disease progression in two IPF cohorts. METHODS: Visual emphysema presence (>0% emphysema) scored on computed tomography identified CPFE patients (CPFE/non-CPFE: derivation cohort n=317/n=183, replication cohort n=358/n=152), who were subgrouped using 10% or 15% visual emphysema thresholds, and an unsupervised machine-learning model considering emphysema and interstitial lung disease extents. Baseline characteristics, 1-year relative FVC and diffusing capacity of the lung for carbon monoxide (D LCO) decline (linear mixed-effects models), and their associations with mortality (multivariable Cox regression models) were compared across non-CPFE and CPFE subgroups. RESULTS: In both IPF cohorts, CPFE patients with ≥10% emphysema had a greater smoking history and lower baseline D LCO compared to CPFE patients with <10% emphysema. Using multivariable Cox regression analyses in patients with ≥10% emphysema, 1-year D LCO decline showed stronger mortality associations than 1-year FVC decline. Results were maintained in patients suitable for therapeutic IPF trials and in subjects subgrouped by ≥15% emphysema and using unsupervised machine learning. Importantly, the unsupervised machine-learning approach identified CPFE patients in whom FVC decline did not associate strongly with mortality. In non-CPFE IPF patients, 1-year FVC declines ≥5% and ≥10% showed strong mortality associations. CONCLUSION: When assessing disease progression in IPF, D LCO decline should be considered in patients with ≥10% emphysema and a ≥5% 1-year relative FVC decline threshold considered in non-CPFE IPF patients.
Asunto(s)
Enfisema , Fibrosis Pulmonar Idiopática , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/complicaciones , Pulmón , Fibrosis , Enfisema/complicaciones , Progresión de la Enfermedad , Estudios RetrospectivosRESUMEN
The simultaneous discrimination and detection of multiple anions in an aqueous solution has been a major challenge due to their structural similarity and low charge radii. In this study, we have constructed a supramolecular fluorescence sensor array based on three host-guest complexes to distinguish five anions (F-, Cl-, Br-, I-, and ClO-) in an aqueous solution using anionic-induced fluorescence quenching combined with linear discriminant analysis. Due to the different affinities of the three host-guest complexes for each anion the anion quenching efficiency for each host-guest complex was likewise different, and the five anions were well recognized. The fluorescence sensor array not only distinguished anions at different concentrations (0.5, 10, and 50 µM) with 100% accuracy but also showed good linearity within a certain concentration range. The limit of detection (LOD) was < 0.5 µM. Our interference study showed that the developed sensor array had good anti-interference ability. The practicability of the developed sensor array was also verified by the identification and differentiation of toothpaste brands with different fluoride content and the prediction of the iodine concentration in urine combined with machine learning.
Asunto(s)
Aniones , Yodo , Límite de Detección , Aprendizaje Automático , Espectrometría de Fluorescencia , Aniones/orina , Aniones/química , Yodo/orina , Yodo/química , Espectrometría de Fluorescencia/métodos , Pastas de Dientes/química , Colorantes Fluorescentes/química , Fluoruros/química , Fluoruros/orina , Análisis DiscriminanteRESUMEN
The present study aimed to investigate the occurrence of ferroptosis in mouse hippocampal tissue and changes in related pathways after exposure to high-altitude hypoxia. A low-pressure hypoxia model was established using a high-altitude environment at 4 010 m. HE staining was used to observe morphological changes in mouse hippocampal tissue, immunohistochemical staining was used to observe lipid peroxidation levels in hippocampal tissue, and corresponding kits were used to measure malondialdehyde (MDA), reduced glutathione (GSH), and Fe2+ levels in hippocampal tissue. Western blot was used to detect glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain 1 (FTH1), ferroportin 1 (FPN1), transferrin receptor 1 (TfR1), ferroptosis suppressor protein 1 (FSP1), and acyl-CoA synthase long chain family member 4 (ACSL4). The results showed that, compared with the plain control group, the mice exposed to high-altitude hypoxia for 1, 3, 7, and 14 d exhibited significant pathological damage, disordered arrangement, and obvious nuclear condensation in the dentate gyrus of the hippocampus. Compared with the plain control group, high-altitude hypoxia exposure increased 4-hydroxynonenal (4-HNE) content in the dentate gyrus and hippocampal MDA content, whereas significantly decreased hippocampal GSH content. Compared with the plain control group, the Fe2+ content in the hippocampus of mice exposed to high-altitude hypoxia for 14 d significantly increased. Compared with the plain control group, the protein expression levels of GPX4, FTH1, FPN1, TfR1, and FSP1 in the hippocampus of mice exposed to high-altitude hypoxia were significantly down-regulated (SLC7A11 was significantly down-regulated only in the 7-d high-altitude hypoxia exposure group), while the protein expression level of ACSL4 was only significantly up-regulated in the 14-d high-altitude hypoxia exposure group. These results suggest that exposure to high-altitude hypoxia for 14 d can reduce GSH synthesis in mouse hippocampus, down-regulate GPX4 expression, lead to GSH metabolism disorders, inhibit iron storage and efflux, promote lipid peroxidation reaction, and inhibit CoQ10H2's anti-lipid peroxidation effect, ultimately leading to ferroptosis.
Asunto(s)
Mal de Altura , Ferroptosis , Hipocampo , Hipoxia , Animales , Ferroptosis/fisiología , Hipocampo/metabolismo , Ratones , Hipoxia/metabolismo , Hipoxia/fisiopatología , Masculino , Mal de Altura/metabolismo , Mal de Altura/fisiopatología , Peroxidación de Lípido , Receptores de Transferrina/metabolismo , Altitud , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Glutatión/metabolismo , Malondialdehído/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Catión/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genéticaRESUMEN
Diabetic nephropathy(DN), a progressive chronic kidney disease(CKD) induced by diabetes mellitus, is the main cause of end-stage renal disease. Renal interstitial fibrosis(RIF) is an irreversible factor in the progression and deterioration of the renal function in DN. Chronic inflammation has become a key link in the pathogenesis of DN-RIF. The NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome is an important inflammatory regulator regulated by a variety of signals. It promotes the production of pro-inflammatory cytokines and induces renal inflammatory cell infiltration to participate in the process of renal fibrosis, demonstrating a complex mechanism of action. In view of the important role of NLRP3 inflammasomes in the prevention and treatment of DN-RIF, a large number of experimental studies have demonstrated that traditional Chinese medicine(TCM) can reduce the inflammation by regulating the pathways involving NLRP3 inflammasome, thereby slowing down the progression of DN-RIF and improving the renal function. This paper reviews the relationship between NLRP3 inflammasomes and DN-RIF, and the research progress in the mechanism of TCM intervention in NLRP3 inflammasomes to alleviate DN-RIF, aiming to provide new ideas for the targeted treatment of DN-RIF.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Inflamasomas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Medicina Tradicional China , Inflamación/metabolismo , FibrosisRESUMEN
National Medical Products Administration released the Special provisions on the administration of registration of traditio-nal Chinese medicine(TCM) in February 2023, encouraging high-quality human use experience(HUE) study in TCM clinical practice to obtain sufficient evidence for TCM registration support. The provisions suggested that the HUE study should meet the relevant requirements and accept the drug registration verification. This paper aims to standardize the HUE study, obtain high-quality HUE data to support registration applications, and promote the standardization of research. In accordance with the relevant laws and regulations of the state and the requirements of the technical guidelines for the HUE study in the drug review center of the National Medical Products Administration, the clinical characteristics of TCM were considered, and the Clinical Evaluation Committee of Traditional Chinese Me-dicine of the Chinese Pharmaceutical Association organized and formulated the Guidelines for quality control of human use experience study on traditional Chinese medicine,including the conditions of medical institutions carrying out HUE study, researchers, sponsors, key information and requirements of pharmacy, research programs, key points of ethical review, requirements of the research implementation process, risk management, and subject protection of HUE study. After several rounds of consultation with experts, a guideline document suitable for supporting drug registration and guiding HUE study on TCM was finally formed.
Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Control de Calidad , Humanos , Medicina Tradicional China/normas , Medicamentos Herbarios Chinos/normas , ChinaRESUMEN
Chronic inflammation is one of the definite factors leading to the occurrence and development of tumors, including prostate cancer (PCa). The androgen receptor (AR) pathway is essential for PCa tumorigenesis and inflammatory response. However, little is known about the AR-regulated NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome pathway in human PCa. In this study, we explored the expression of inflammatory cytokine and AR in high-grade PCa and observed that NLRP3 inflammasome-associated genes were upregulated in high-grade PCa compared with that in low-grade PCa and benign prostatic hyperplasia and were associated with AR expression. In addition, we identified circAR-3-a circRNA derived from the AR gene-which is involved in the AR-regulated inflammatory response and cell proliferation by activating the NLRP3 inflammatory pathway. While circAR-3 overexpression promoted cell proliferation and the inflammatory response, its depletion induced opposite effects. Mechanistically, we noted that circAR-3 mediated the acetylation modification of NLRP3 by KAT2B and then promoted NLRP3 inflammasome complex subcellular distribution and assembly. Disturbing NLRP3 acetylation or blocking inflammasome assembly with an inhibitor suppressed the progression of PCa xenograft tumors. Our findings provide the first evidence that targeting NLRP3 acetylation or inflammasome assembly may be effective in inhibiting PCa progression.
Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Acetilación , Citocinas/metabolismo , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neoplasias de la Próstata/metabolismo , ARN Circular , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismoRESUMEN
OBJECTIVES: The study examined whether quantified airway metrics associate with mortality in idiopathic pulmonary fibrosis (IPF). METHODS: In an observational cohort study (n = 90) of IPF patients from Ege University Hospital, an airway analysis tool AirQuant calculated median airway intersegmental tapering and segmental tortuosity across the 2nd to 6th airway generations. Intersegmental tapering measures the difference in median diameter between adjacent airway segments. Tortuosity evaluates the ratio of measured segmental length against direct end-to-end segmental length. Univariable linear regression analyses examined relationships between AirQuant variables, clinical variables, and lung function tests. Univariable and multivariable Cox proportional hazards models estimated mortality risk with the latter adjusted for patient age, gender, smoking status, antifibrotic use, CT usual interstitial pneumonia (UIP) pattern, and either forced vital capacity (FVC) or diffusion capacity of carbon monoxide (DLco) if obtained within 3 months of the CT. RESULTS: No significant collinearity existed between AirQuant variables and clinical or functional variables. On univariable Cox analyses, male gender, smoking history, no antifibrotic use, reduced DLco, reduced intersegmental tapering, and increased segmental tortuosity associated with increased risk of death. On multivariable Cox analyses (adjusted using FVC), intersegmental tapering (hazard ratio (HR) = 0.75, 95% CI = 0.66-0.85, p < 0.001) and segmental tortuosity (HR = 1.74, 95% CI = 1.22-2.47, p = 0.002) independently associated with mortality. Results were maintained with adjustment using DLco. CONCLUSIONS: AirQuant generated measures of intersegmental tapering and segmental tortuosity independently associate with mortality in IPF patients. Abnormalities in proximal airway generations, which are not typically considered to be abnormal in IPF, have prognostic value. CLINICAL RELEVANCE STATEMENT: Quantitative measurements of intersegmental tapering and segmental tortuosity, in proximal (second to sixth) generation airway segments, independently associate with mortality in IPF. Automated airway analysis can estimate disease severity, which in IPF is not restricted to the distal airway tree. KEY POINTS: ⢠AirQuant generates measures of intersegmental tapering and segmental tortuosity. ⢠Automated airway quantification associates with mortality in IPF independent of established measures of disease severity. ⢠Automated airway analysis could be used to refine patient selection for therapeutic trials in IPF.
Asunto(s)
Fibrosis Pulmonar Idiopática , Tomografía Computarizada por Rayos X , Masculino , Humanos , Lactante , Tomografía Computarizada por Rayos X/métodos , Capacidad Vital , Estudios de Cohortes , Pronóstico , Pulmón/diagnóstico por imagenRESUMEN
Oxidative stress is a major cause of ovarian aging and follicular atresia. There is growing evidence that showed potential roles of rutin in antidiabetic, anti-inflammatory, antitumor, antibacterial and antioxidant, although it is yet unclear what the underlying mechanism is. Here, we looked into the potential effects of rutin on oxidative stress in the prehierarchical small white follicles (SWFs) from 580-day-old (D580) laying chickens. According to the findings, aging D580 layer ferroptosis was much higher than it was for laying hens during the peak period (280-day-old, D280). In both naturally aged and d-gal-induced chicken SWFs, rutin treatment concurrently boosted cell proliferation and prevented apoptosis. In addition, rutin inhibited the increased ferroptosis in aging hens. Meanwhile, rutin markedly suppressed the elevated ferroptosis and descending antioxidant capacity of D280-culture-SWFs from chicken elicited by d-gal. Rutin's activation of the Nrf2/HO-1 pathway hastened the SWFs' verbal battle with oxidative damage and reduced ferroptosis. Furthermore, activation of the ferroptosis signal increased the oxidative damage in SWFs. In conclusion, rutin alleviated oxidative stress that was induced by ferroptosis in aging chicken SWFs through Nrf2/HO-1 pathway. These findings point to a novel mechanism by which rutin protects SWFs from oxidative stress by suppressing ferroptosis, which is presumably a fresh approach to slowing ovarian aging in laying hens.
Asunto(s)
Antioxidantes , Ferroptosis , Femenino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Rutina/farmacología , Pollos/metabolismo , Atresia Folicular , Estrés Oxidativo , EnvejecimientoRESUMEN
The separation of phenylenediamine (PDA) isomers is crucial in the field of chemical manufacturing. Herein, we presented a strategy for the separation of PDA isomers (para-phenylenediamine, p-PDA; meta-phenylenediamine, m-PDA; ortho-phenylenediamine, o-PDA) using four supramolecular framework materials of ns-cucurbit[10]uril (ns-Q[10]), (1) ns-Q[10](Cd), (2) ns-Q[10](Mn), (3) ns-Q[10](Cu), (4) ns-Q[10](Pb). Our findings indicated that these supramolecular framework materials of ns-Q[10] showed remarkable selectivity for para-phenylenediamine (p-PDA) in p-PDA, m-PDA, and o-PDA mixtures, respectively. The variations in selectivity observed in these four single-crystal structures arose from variations in the thermodynamic stabilities and binding modes of the host-guest complexes. Importantly, the supramolecular framework based on ns-Q[10] exhibited selective accommodation of p-PDA over its isomers. This study highlighted the practical application of ns-Q[10] in effectively separating PDA isomers and demonstrated the potential utility of ns-Q[10] in isolating other organic molecules.
RESUMEN
Solid-state materials with efficient room-temperature phosphorescence (RTP) emission have been widely used in materials science, and organic RTP-emitting systems with heavy-metal doping in aqueous solutions have attracted much attention in recent years. A novel supramolecular interaction was induced by host-guest assembly using cucurbit[7]uril (Q[7]) as the host and brominated naphthalimide phosphor as the guest. This interaction was further enhanced through synergistic chelation stimulated by analytical silver ion complexation. This approach facilitated the system's structural rigidity, intersystem crossing, and oxygen shielding. We achieved deep red phosphorescence emission in aqueous solution and ambient conditions along with quantitative determination of silver ions. The new complex exhibited good reversible thermoresponsive behavior and was successfully applied for the first time to target phosphorescence imaging of silver ions in the mitochondria of A549 cancer cells. These results are beneficial for constructing novel RTP systems with stimulus-responsive luminescence in aqueous solution, contributing to future research in bioimaging, detection, optical sensors, and thermometry materials.
RESUMEN
BACKGROUND: Several proteins in the tripartite-motif (TRIM) family are associated with the development of colorectal cancer (CRC), but research on the role of TRIM69 was lacking. The present study examined the correlation between TRIM69 expression and colon adenocarcinoma (COAD). METHODS: mRNA sequencing data for COAD patients was extracted from The Cancer Genome Atlas to analyze correlations between TRIM69 expression and patients' clinical features as well as survival. Potential associations with immune cells and chemosensitivity also were predicted using various algorithms in the TIMER, Limma, clusterProfiler, GeneMANIA, and Gene Set Cancer Analysis platforms. Subsequently, polymerase chain reaction analysis and immunohistochemical staining were used to detect TRIM69 expression in COAD tissue samples from real-world patients. RESULTS: TRIM69 expression was lower in COAD tissues than in normal tissues and correlated with the pathologic stage and metastasis (M category). Additionally, TRIM69 was found to be involved in several immune-related pathways, notably the NOD-like signaling pathway. These results suggest that high TRIM69 expression has the potential to enhance tumor sensitivity to 5-fluorouracil and programmed cell death protein 1 (PD-1) blockers. CONCLUSIONS: From our findings that TRIM69 expression was significantly reduced in COAD compared with non-cancer tissues and associated with pathologic stage and metastasis, we conclude that increasing TRIM69 expression and/or activity may help to improve therapeutic outcomes. Accordingly, TRIM69 represents a potentially valuable marker of metastasis and target for adjuvant therapy in COAD.
Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Fluorouracilo/uso terapéutico , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Receptor de Muerte Celular Programada 1 , Algoritmos , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Cerebral hypoxia often brings irreversible damage to the central nervous system, which seriously endangers human health. It is of great significance to further explore the mechanism of hypoxia-associated brain injury. As a programmed cell death, ferroptosis mainly manifests as cell death caused by excessive accumulation of iron-dependent lipid peroxides. It is associated with abnormal glutathione metabolism, lipid peroxidation and iron metabolism, and is involved in the occurrence and development of various diseases. Studies have found that ferroptosis plays an important role in hypoxia-associated brain injury. This review summarizes the mechanism of ferroptosis, and describes its research progress in cerebral ischemia reperfusion injury, neonatal hypoxic-ischemic brain damage, obstructive sleep apnea-induced brain injury and high-altitude hypoxic brain injury.
Asunto(s)
Lesiones Encefálicas , Ferroptosis , Hipoxia-Isquemia Encefálica , Daño por Reperfusión , Humanos , Recién Nacido , Apoptosis , HierroRESUMEN
Chinese patent medicines(CPMs) are unique therapeutic drugs in China. Establishing and improving the evaluation criteria is an important measure to promote the high-quality development of CPMs. Based on the "evaluation criteria of high-grade CPMs with quality as the core index" established by our group in 2018, the "high-quality evaluation criteria for CPMs based on whole process control" was proposed in the present study in 2022. The scope of application and basic principles of the new criteria were clarified. A quality evaluation scoring table was established in the new criteria, including five parts: raw material selection, production process, quality control, efficacy evaluation, and brand building. The technical evaluation indexes involved have increased from 20% in the original criteria to 70% in the new criteria, and efficacy evaluation has been added in the new criteria. The subjective evaluation indicators account for a large proportion in the original criteria, which is prone to bias. The improved criteria overcome this shortcoming. It is expected that the new criteria as a basis can play a better role in the selection of high-quality products of CPMs, guide enterprises and institutions to participate actively in the evaluation and research of high-quality CPMs, and promote the high-quality development of CPMs.
Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos sin Prescripción , Clorobencenos , ChinaRESUMEN
Molecular diagnosing, typing, and staging have been considered to be the ideal alternatives of imaging-based detection methods in clinics. Designer matrix-based analytical tools, with high speed, throughout, efficiency and low/noninvasiveness, have attracted much attention recently for in vitro metabolite detection. Herein, we develop an advanced metabolic analysis tool based on highly porous metal oxides derived from available metal-organic frameworks (MOFs), which elaborately inherit the morphology and porosity of MOFs and newly incorporate laser adsorption capacity of metal oxides. Through optimized conditions, direct high-quality fingerprinting spectra in 0.5 µL of urine are acquired. Using these fingerprinting spectra, we can discriminate the renal cell carcinoma (RCC) from healthy controls with higher than 0.99 of area under the curve (AUC) values (R2Y(cum) = 0.744, Q2 (cum) = 0.880), as well, from patients with other tumors (R2Y(cum) = 0.748, Q2(cum) = 0.871). We also realize the typing of three RCC subtypes, including clear cell RCC, chromophobe RCC (R2Y(cum) = 0.620, Q2(cum) = 0.656), and the staging of RCC (R2Y(cum) = 0.755, Q2(cum) = 0.857). Moreover, the tumor sizes (threshold value is 3 cm) can be remarkably recognized by this advanced metabolic analysis tool (R2Y(cum) = 0.710, Q2(cum) = 0.787). Our work brings a bright prospect for designer matrix-based analytical tools in disease diagnosis, typing and staging.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/metabolismo , Diagnóstico Diferencial , Urinálisis , Óxidos , Estadificación de NeoplasiasRESUMEN
Danzhi Xiaoyao Powder is a classical prescription for anxiety. This study aims to analyze the effect of this medicine on mitochondrial morphology and function of anxiety rats and explore the mechanism of it against anxiety. Specifically, uncertain empty bottle drinking water stimulation(21 days) was employed to induce anxiety in rats. The elevated plus-maze test and open field test were respectively performed on the 7 th, the 14 th, and the 21 st days of the stimulation, so as to detect the anxiety-related protein index brain-derived neurotrophic factor(BDNF) and evaluate the anxiety level of animals. On this basis, the effect of this prescription on anxiety rats was preliminarily evaluated. After the behavioral test on the 21 st day, rats were killed and the brain tissues were separated for the observation of the mitochondrial morphology and the determination of mitochondrial function-related indicators and the adenosine 5'-monophosphate-activated protein kinase(AMPK) level. The results showed that Danzhi Xiaoxiao Powder could alleviate the anxiety-like behavior of rats, significantly increase the percentage of time in open arm in elevated plus-maze test and the ration of activity time in the central area of the field, dose-dependently raise the activity levels of respiratory chain complex â ,â ¡,â ¢ and â £ and the adenosine triphosphate(ATP) content, and elevate the levels of BDNF and phosphorylated AMPK(p-AMPK). Clear structure and intact morphology of mitochondrial cristae in medial prefrontal cortex cells and amygdala were observed in the Danzhi Xiaoyao Powder group. In summary, Danzhi Xiaoyao Powder exerts therapeutic effect on anxiety, and the mechanism is the likelihood that p-AMPK protects the structure and maintains the function of mitochondria.