Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.998
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 24(3): 516-530, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732424

RESUMEN

How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.


Asunto(s)
Fosfatos de Fosfatidilinositol , Fosfatidilinositoles , Fosfatidilinositoles/metabolismo , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo , Linfocitos T CD8-positivos/metabolismo
2.
Immunity ; 57(8): 1864-1877.e9, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39111315

RESUMEN

Tumor-infiltrating lymphocyte (TIL) hypofunction contributes to the progression of advanced cancers and is a frequent target of immunotherapy. Emerging evidence indicates that metabolic insufficiency drives T cell hypofunction during tonic stimulation, but the signals that initiate metabolic reprogramming in this context are largely unknown. Here, we found that Meteorin-like (METRNL), a metabolically active cytokine secreted by immune cells in the tumor microenvironment (TME), induced bioenergetic failure of CD8+ T cells. METRNL was secreted by CD8+ T cells during repeated stimulation and acted via both autocrine and paracrine signaling. Mechanistically, METRNL increased E2F-peroxisome proliferator-activated receptor delta (PPARδ) activity, causing mitochondrial depolarization and decreased oxidative phosphorylation, which triggered a compensatory bioenergetic shift to glycolysis. Metrnl ablation or downregulation improved the metabolic fitness of CD8+ T cells and enhanced tumor control in several tumor models, demonstrating the translational potential of targeting the METRNL-E2F-PPARδ pathway to support bioenergetic fitness of CD8+ TILs.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos Infiltrantes de Tumor , Mitocondrias , Microambiente Tumoral , Linfocitos T CD8-positivos/inmunología , Animales , Mitocondrias/metabolismo , Mitocondrias/inmunología , Ratones , Microambiente Tumoral/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Humanos , Ratones Endogámicos C57BL , Citocinas/metabolismo , Transducción de Señal , Metabolismo Energético , PPAR delta/metabolismo , Línea Celular Tumoral , Neoplasias/inmunología , Glucólisis , Ratones Noqueados , Fosforilación Oxidativa
3.
Cell ; 171(4): 890-903.e18, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29107329

RESUMEN

Eukaryotic cells have evolved extensive protein quality-control mechanisms to remove faulty translation products. Here, we show that yeast cells continually produce faulty mitochondrial polypeptides that stall on the ribosome during translation but are imported into the mitochondria. The cytosolic protein Vms1, together with the E3 ligase Ltn1, protects against the mitochondrial toxicity of these proteins and maintains cell viability under respiratory conditions. In the absence of these factors, stalled polypeptides aggregate after import and sequester critical mitochondrial chaperone and translation machinery. Aggregation depends on C-terminal alanyl/threonyl sequences (CAT-tails) that are attached to stalled polypeptides on 60S ribosomes by Rqc2. Vms1 binds to 60S ribosomes at the mitochondrial surface and antagonizes Rqc2, thereby facilitating import, impeding aggregation, and directing aberrant polypeptides to intra-mitochondrial quality control. Vms1 is a key component of a rescue pathway for ribosome-stalled mitochondrial polypeptides that are inaccessible to ubiquitylation due to coupling of translation and translocation.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/fisiología , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Citosol/metabolismo , Transporte de Electrón , Homeostasis , Saccharomyces cerevisiae/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
4.
Nature ; 616(7958): 712-718, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020031

RESUMEN

Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels1-3, for which all these applications involve strong light. Here we show that self-powered polycrystalline perovskite photodetectors can rival the commercial silicon photomultipliers (SiPMs) for photon counting. The photon-counting capability of perovskite photon-counting detectors (PCDs) is mainly determined by shallow traps, despite that deep traps also limit charge-collection efficiency. Two shallow traps with energy depth of 5.8 ± 0.8 millielectronvolts (meV) and 57.2 ± 0.1 meV are identified in polycrystalline methylammonium lead triiodide, which mainly stay at grain boundaries and the surface, respectively. We show that these shallow traps can be reduced by grain-size enhancement and surface passivation using diphenyl sulfide, respectively. It greatly suppresses dark count rate (DCR) from >20,000 counts per second per square millimetre (cps mm-2) to 2 cps mm-2 at room temperature, enabling much better response to weak light than SiPMs. The perovskite PCDs can collect γ-ray spectra with better energy resolution than SiPMs and maintain performance at high temperatures up to 85 °C. The zero-bias operation of perovskite detectors enables no drift of noise and detection property. This study opens a new application of photon counting for perovskites that uses their unique defect properties.

5.
Nature ; 618(7964): 411-418, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258668

RESUMEN

The nuclear pore complex (NPC) is the bidirectional gate that mediates the exchange of macromolecules or their assemblies between nucleus and cytoplasm1-3. The assembly intermediates of the ribosomal subunits, pre-60S and pre-40S particles, are among the largest cargoes of the NPC and the export of these gigantic ribonucleoproteins requires numerous export factors4,5. Here we report the cryo-electron microscopy structure of native pre-60S particles trapped in the channel of yeast NPCs. In addition to known assembly factors, multiple factors with export functions are also included in the structure. These factors in general bind to either the flexible regions or subunit interface of the pre-60S particle, and virtually form many anchor sites for NPC binding. Through interactions with phenylalanine-glycine (FG) repeats from various nucleoporins of NPC, these factors collectively facilitate the passage of the pre-60S particle through the central FG repeat network of the NPC. Moreover, in silico analysis of the axial and radial distribution of pre-60S particles within the NPC shows that a single NPC can take up to four pre-60S particles simultaneously, and pre-60S particles are enriched in the inner ring regions close to the wall of the NPC with the solvent-exposed surface facing the centre of the nuclear pore. Our data suggest a translocation model for the export of pre-60S particles through the NPC.


Asunto(s)
Transporte Activo de Núcleo Celular , Poro Nuclear , Saccharomyces cerevisiae , Microscopía por Crioelectrón , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/ultraestructura , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Fenilalanina , Glicina , Simulación por Computador , Solventes
6.
Mol Cell ; 81(14): 2914-2928.e7, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34107307

RESUMEN

Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas/fisiología , Aminoácidos/metabolismo , Supervivencia Celular/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Factores de Terminación de Péptidos/metabolismo , Peptidil Transferasas/metabolismo , Unión Proteica/fisiología , Pliegue de Proteína , Proteómica/métodos , Proteostasis/fisiología , Ribosomas/metabolismo
7.
Nature ; 603(7900): 271-275, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038718

RESUMEN

In oxidation reactions catalysed by supported metal nanoparticles with oxygen as the terminal oxidant, the rate of the oxygen reduction can be a limiting factor. This is exemplified by the oxidative dehydrogenation of alcohols, an important class of reactions with modern commercial applications1-3. Supported gold nanoparticles are highly active for the dehydrogenation of the alcohol to an aldehyde4 but are less effective for oxygen reduction5,6. By contrast, supported palladium nanoparticles offer high efficacy for oxygen reduction5,6. This imbalance can be overcome by alloying gold with palladium, which gives enhanced activity to both reactions7,8,9; however, the electrochemical potential of the alloy is a compromise between that of the two metals, meaning that although the oxygen reduction can be improved in the alloy, the dehydrogenation activity is often limited. Here we show that by separating the gold and palladium components in bimetallic carbon-supported catalysts, we can almost double the reaction rate compared with that achieved with the corresponding alloy catalyst. We demonstrate this using physical mixtures of carbon-supported monometallic gold and palladium catalysts and a bimetallic catalyst comprising separated gold and palladium regions. Furthermore, we demonstrate electrochemically that this enhancement is attributable to the coupling of separate redox processes occurring at isolated gold and palladium sites. The discovery of this catalytic effect-a cooperative redox enhancement-offers an approach to the design of multicomponent heterogeneous catalysts.


Asunto(s)
Oro , Nanopartículas del Metal , Alcoholes , Aleaciones , Carbono , Catálisis , Oxidación-Reducción , Oxígeno , Paladio
8.
Nature ; 597(7877): 544-548, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526724

RESUMEN

Adoptive transfer of antigen-specific T cells represents a major advance in cancer immunotherapy, with robust clinical outcomes in some patients1. Both the number of transferred T cells and their differentiation state are critical determinants of effective responses2,3. T cells can be expanded with T cell receptor (TCR)-mediated stimulation and interleukin-2, but this can lead to differentiation into effector T cells4,5 and lower therapeutic efficacy6, whereas maintenance of a more stem-cell-like state before adoptive transfer is beneficial7. Here we show that H9T, an engineered interleukin-2 partial agonist, promotes the expansion of CD8+ T cells without driving terminal differentiation. H9T led to altered STAT5 signalling and mediated distinctive downstream transcriptional, epigenetic and metabolic programs. In addition, H9T treatment sustained the expression of T cell transcription factor 1 (TCF-1) and promoted mitochondrial fitness, thereby facilitating the maintenance of a stem-cell-like state. Moreover, TCR-transgenic and chimeric antigen receptor-modified CD8+ T cells that were expanded with H9T showed robust anti-tumour activity in vivo in mouse models of melanoma and acute lymphoblastic leukaemia. Thus, engineering cytokine variants with distinctive properties is a promising strategy for creating new molecules with translational potential.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Agonismo Parcial de Drogas , Interleucina-2/análogos & derivados , Interleucina-2/agonistas , Proteínas Mutantes/farmacología , Células Madre/efectos de los fármacos , Animales , Linfocitos T CD8-positivos/inmunología , Interleucina-2/química , Interleucina-2/genética , Melanoma/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Factor de Transcripción STAT5/metabolismo , Células Madre/citología , Factor 1 de Transcripción de Linfocitos T/metabolismo , Investigación Biomédica Traslacional
9.
Mol Cell ; 76(6): 857-871.e9, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31586547

RESUMEN

The oxidative pentose phosphate pathway (oxiPPP) contributes to cell metabolism through not only the production of metabolic intermediates and reductive NADPH but also inhibition of LKB1-AMPK signaling by ribulose-5-phosphate (Ru-5-P), the product of the third oxiPPP enzyme 6-phosphogluconate dehydrogenase (6PGD). However, we found that knockdown of glucose-6-phosphate dehydrogenase (G6PD), the first oxiPPP enzyme, did not affect AMPK activation despite decreased Ru-5-P and subsequent LKB1 activation, due to enhanced activity of PP2A, the upstream phosphatase of AMPK. In contrast, knockdown of 6PGD or 6-phosphogluconolactonase (PGLS), the second oxiPPP enzyme, reduced PP2A activity. Mechanistically, knockdown of G6PD or PGLS decreased or increased 6-phosphogluconolactone level, respectively, which enhanced the inhibitory phosphorylation of PP2A by Src. Furthermore, γ-6-phosphogluconolactone, an oxiPPP byproduct with unknown function generated through intramolecular rearrangement of δ-6-phosphogluconolactone, the only substrate of PGLS, bound to Src and enhanced PP2A recruitment. Together, oxiPPP regulates AMPK homeostasis by balancing the opposing LKB1 and PP2A.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Gluconatos/metabolismo , Neoplasias/enzimología , Proteína Fosfatasa 2/metabolismo , Células A549 , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Proliferación Celular , Activación Enzimática , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Células HEK293 , Células HT29 , Humanos , Células K562 , Células MCF-7 , Ratones Desnudos , Neoplasias/genética , Neoplasias/patología , Células PC-3 , Vía de Pentosa Fosfato , Unión Proteica , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ribulosafosfatos/metabolismo , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Carga Tumoral , Familia-src Quinasas/metabolismo
10.
EMBO J ; 41(15): e110218, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775648

RESUMEN

Carnitine metabolism is thought to be negatively correlated with the progression of hepatocellular carcinoma (HCC) and the specific molecular mechanism is yet to be fully elucidated. Here, we report that little characterized cysteine-rich protein 1 (CRIP1) is upregulated in HCC and associated with poor prognosis. Moreover, CRIP1 promoted HCC cancer stem-like properties by downregulating carnitine energy metabolism. Mechanistically, CRIP1 interacted with BBOX1 and the E3 ligase STUB1, promoting BBOX1 ubiquitination and proteasomal degradation, and leading to the downregulation of carnitine. BBOX1 ubiquitination at lysine 240 is required for CRIP1-mediated control of carnitine metabolism and cancer stem-like properties. Further, our data showed that acetylcarnitine downregulation in CRIP1-overexpressing cells decreased beta-catenin acetylation and promoted nuclear accumulation of beta-catenin, thus facilitating cancer stem-like properties. Clinically, patients with higher CRIP1 protein levels had lower BBOX1 levels but higher nuclear beta-catenin levels in HCC tissues. Together, our findings identify CRIP1 as novel upstream control factor for carnitine metabolism and cancer stem-like properties, suggesting targeting of the CRIP1/BBOX1/ß-catenin axis as a promising strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Proteínas Portadoras/metabolismo , Proteínas con Dominio LIM/metabolismo , Neoplasias Hepáticas , gamma-Butirobetaína Dioxigenasa/metabolismo , Carcinoma Hepatocelular/metabolismo , Carnitina , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
11.
J Immunol ; 212(4): 551-562, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38197664

RESUMEN

Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 µg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.


Asunto(s)
Lubina , Rhabdoviridae , Vacunas , Animales , Femenino , Simulación del Acoplamiento Molecular , Epítopos , Glicoproteínas , Desarrollo de Vacunas
12.
Proc Natl Acad Sci U S A ; 120(8): e2211703120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36780522

RESUMEN

The immune system is increasingly recognized as an important regulator of tissue repair. We developed a regenerative immunotherapy from the helminth Schistosoma mansoni soluble egg antigen (SEA) to stimulate production of interleukin (IL)-4 and other type 2-associated cytokines without negative infection-related sequelae. The regenerative SEA (rSEA) applied to a murine muscle injury induced accumulation of IL-4-expressing T helper cells, eosinophils, and regulatory T cells and decreased expression of IL-17A in gamma delta (γδ) T cells, resulting in improved repair and decreased fibrosis. Encapsulation and controlled release of rSEA in a hydrogel further enhanced type 2 immunity and larger volumes of tissue repair. The broad regenerative capacity of rSEA was validated in articular joint and corneal injury models. These results introduce a regenerative immunotherapy approach using natural helminth derivatives.


Asunto(s)
Esquistosomiasis mansoni , Animales , Ratones , Esquistosomiasis mansoni/terapia , Citocinas/metabolismo , Schistosoma mansoni , Linfocitos T Colaboradores-Inductores , Antígenos Helmínticos , Inmunoterapia
13.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37317617

RESUMEN

Human prescription drug labeling contains a summary of the essential scientific information needed for the safe and effective use of the drug and includes the Prescribing Information, FDA-approved patient labeling (Medication Guides, Patient Package Inserts and/or Instructions for Use), and/or carton and container labeling. Drug labeling contains critical information about drug products, such as pharmacokinetics and adverse events. Automatic information extraction from drug labels may facilitate finding the adverse reaction of the drugs or finding the interaction of one drug with another drug. Natural language processing (NLP) techniques, especially recently developed Bidirectional Encoder Representations from Transformers (BERT), have exhibited exceptional merits in text-based information extraction. A common paradigm in training BERT is to pretrain the model on large unlabeled generic language corpora, so that the model learns the distribution of the words in the language, and then fine-tune on a downstream task. In this paper, first, we show the uniqueness of language used in drug labels, which therefore cannot be optimally handled by other BERT models. Then, we present the developed PharmBERT, which is a BERT model specifically pretrained on the drug labels (publicly available at Hugging Face). We demonstrate that our model outperforms the vanilla BERT, ClinicalBERT and BioBERT in multiple NLP tasks in the drug label domain. Moreover, how the domain-specific pretraining has contributed to the superior performance of PharmBERT is demonstrated by analyzing different layers of PharmBERT, and more insight into how it understands different linguistic aspects of the data is gained.


Asunto(s)
Etiquetado de Medicamentos , Almacenamiento y Recuperación de la Información , Humanos , Aprendizaje , Procesamiento de Lenguaje Natural
14.
Plant Physiol ; 195(3): 1995-2015, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38507576

RESUMEN

Grapevine (Vitis vinifera L.) incurs severe quality degradation and yield loss from powdery mildew, a major fungal disease caused by Erysiphe necator. ENHANCED DISEASE RESISTANCE1 (EDR1), a Raf-like mitogen-activated protein kinase kinase kinase, negatively regulates defense responses against powdery mildew in Arabidopsis (Arabidopsis thaliana). However, little is known about the role of the putatively orthologous EDR1 gene in grapevine. In this study, we obtained grapevine VviEDR1-edited lines using CRISPR/Cas9. Plantlets containing homozygous and bi-allelic indels in VviEDR1 developed leaf lesions shortly after transplanting into the soil and died at the seedling stage. Transgenic plants expressing wild-type VviEDR1 and mutant Vviedr1 alleles as chimera (designated as VviEDR1-chi) developed normally and displayed enhanced resistance to powdery mildew. Interestingly, VviEDR1-chi plants maintained a spatiotemporally distinctive pattern of VviEDR1 mutagenesis: while almost no mutations were detected from terminal buds, ensuring normal function of the apical meristem, mutations occurred in young leaves and increased as leaves matured, resulting in resistance to powdery mildew. Further analysis showed that the resistance observed in VviEDR1-chi plants was associated with callose deposition, increased production of salicylic acid and ethylene, H2O2 production and accumulation, and host cell death. Surprisingly, no growth penalty was observed with VviEDR1-chi plants. Hence, this study demonstrated a role of VviEDR1 in the negative regulation of resistance to powdery mildew in grapevine and provided an avenue for engineering powdery mildew resistance in grapevine.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Mutación , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Vitis , Vitis/genética , Vitis/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Mutación/genética , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Erysiphe/genética , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Sistemas CRISPR-Cas
15.
FASEB J ; 38(9): e23657, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713087

RESUMEN

The pathogenesis of osteoporosis (OP) is closely associated with the disrupted balance between osteogenesis and adipogenesis in bone marrow-derived mesenchymal stem cells (BMSCs). We analyzed published single-cell RNA sequencing (scRNA-seq) data to dissect the transcriptomic profiles of bone marrow-derived cells in OP, reviewing 56 377 cells across eight scRNA-seq datasets from femoral heads (osteoporosis or osteopenia n = 5, osteoarthritis n = 3). Seventeen genes, including carboxypeptidase M (CPM), were identified as key osteogenesis-adipogenesis regulators through comprehensive gene set enrichment, differential expression, regulon activity, and pseudotime analyses. In vitro, CPM knockdown reduced osteogenesis and promoted adipogenesis in BMSCs, while adenovirus-mediated CPM overexpression had the reverse effects. In vivo, intraosseous injection of CPM-overexpressing BMSCs mitigated bone loss in ovariectomized mice. Integrated scRNA-seq and bulk RNA sequencing analyses provided insight into the MAPK/ERK pathway's role in the CPM-mediated regulation of BMSC osteogenesis and adipogenesis; specifically, CPM overexpression enhanced MAPK/ERK signaling and osteogenesis. In contrast, the ERK1/2 inhibitor binimetinib negated the effects of CPM overexpression. Overall, our findings identify CPM as a pivotal regulator of BMSC differentiation, which provides new clues for the mechanistic study of OP.


Asunto(s)
Adipogénesis , Carboxipeptidasas , Sistema de Señalización de MAP Quinasas , Células Madre Mesenquimatosas , Osteogénesis , Análisis de la Célula Individual , Animales , Femenino , Humanos , Ratones , Carboxipeptidasas/metabolismo , Carboxipeptidasas/genética , Diferenciación Celular , Proteínas Ligadas a GPI , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Metaloendopeptidasas , Ratones Endogámicos C57BL , Osteogénesis/fisiología , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Transcriptoma
16.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38850218

RESUMEN

Closed head injury is a prevalent form of traumatic brain injury with poorly understood effects on cortical neural circuits. Given the emotional and behavioral impairments linked to closed head injury, it is vital to uncover brain functional deficits and their driving mechanisms. In this study, we employed a robust viral tracing technique to identify the alteration of the neural pathway connecting the medial prefrontal cortex to the basolateral amygdala, and we observed the disruptions in neuronal projections between the medial prefrontal cortex and the basolateral amygdala following closed head injury. Remarkably, our results highlight that ZL006, an inhibitor targeting PSD-95/nNOS interaction, stands out for its ability to selectively reverse these aberrations. Specifically, ZL006 effectively mitigates the disruptions in neuronal projections from the medial prefrontal cortex to basolateral amygdala induced by closed head injury. Furthermore, using chemogenetic approaches, we elucidate that activating the medial prefrontal cortex projections to the basolateral amygdala circuit produces anxiolytic effects, aligning with the therapeutic potential of ZL006. Additionally, ZL006 administration effectively mitigates astrocyte activation, leading to the restoration of medial prefrontal cortex glutamatergic neuron activity. Moreover, in the context of attenuating anxiety-like behaviors through ZL006 treatment, we observe a reduction in closed head injury-induced astrocyte engulfment, which may correlate with the observed decrease in dendritic spine density of medial prefrontal cortex glutamatergic neurons.


Asunto(s)
Amígdala del Cerebelo , Ansiedad , Traumatismos Cerrados de la Cabeza , Corteza Prefrontal , Animales , Corteza Prefrontal/efectos de los fármacos , Masculino , Traumatismos Cerrados de la Cabeza/complicaciones , Ansiedad/tratamiento farmacológico , Amígdala del Cerebelo/efectos de los fármacos , Ratones , Vías Nerviosas/efectos de los fármacos , Ratones Endogámicos C57BL , Homólogo 4 de la Proteína Discs Large/metabolismo
17.
Cell Mol Life Sci ; 81(1): 260, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878096

RESUMEN

The pathological advancement of osteoporosis is caused by the uneven development of bone marrow-derived mesenchymal stem cells (BMSCs) in terms of osteogenesis and adipogenesis. While the role of EEF1B2 in intellectual disability and tumorigenesis is well established, its function in the bone-fat switch of BMSCs is still largely unexplored. During the process of osteogenic differentiation, we observed an increase in the expression of EEF1B2, while a decrease in its expression was noted during adipogenesis. Suppression of EEF1B2 hindered the process of osteogenic differentiation and mineralization while promoting adipogenic differentiation. On the contrary, overexpression of EEF1B2 enhanced osteogenesis and strongly inhibited adipogenesis. Furthermore, the excessive expression of EEF1B2 in the tibias has the potential to mitigate bone loss and decrease marrow adiposity in mice with osteoporosis. In terms of mechanism, the suppression of ß-catenin activity occurred when EEF1B2 function was suppressed during osteogenesis. Our collective findings indicate that EEF1B2 functions as a regulator, influencing the differentiation of BMSCs and maintaining a balance between bone and fat. Our finding highlights its potential as a therapeutic target for diseases related to bone metabolism.


Asunto(s)
Adipogénesis , Diferenciación Celular , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Vía de Señalización Wnt , beta Catenina , Animales , Masculino , Ratones , Adipogénesis/genética , beta Catenina/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Osteogénesis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Factor 1 de Elongación Peptídica/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo
18.
Genesis ; 62(1): e23557, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37830136

RESUMEN

Engrailed-1 (EN1) is a developmental gene that encodes En1, a highly conserved transcription factor involved in regionalization during early embryogenesis and in the later maintenance of normal neurons. After birth, EN1 still plays a role in the development and physiology of the body; for example, it exerts a protective effect on midbrain dopaminergic (mDA) neurons, and loss of EN1 causes mDA neurons in the ventral midbrain to gradually die approximately 6 weeks after birth, resulting in motor and nonmotor symptoms similar to those observed in Parkinson's disease. Notably, EN1 has been identified as a possible susceptibility gene for idiopathic Parkinson's disease in humans. EN1 is involved in the processes of wound-healing scar production and tissue and organ fibrosis. Additionally, EN1 can lead to tumorigenesis and thus provides a target for the treatment of some tumors. In this review, we summarize the effects of EN1 on embryonic organ development, describe the consequences of the deletion or overexpression of the EN1 gene, and discuss the pathways in which EN1 is involved. We hope to clarify the role of EN1 as a developmental gene and present potential therapeutic targets for diseases involving the EN1 gene.


Asunto(s)
Proteínas de Homeodominio , Enfermedad de Parkinson , Humanos , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neuronas/metabolismo , Regulación de la Expresión Génica , Genes Homeobox , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
19.
J Am Chem Soc ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316512

RESUMEN

Sustainable electricity-to-chemical conversion via the utilization of artificial catalysts inspired by redox biological systems holds great significance for catalyzing synthesis. Herein, we develop a biomimetic electrosynthesis strategy mediated by a nicotinamide adenine dinucleotide (NADH) mimic-containing coordination capsule for efficiently producing α-hydroxy/amino esters. The coordination saturated metal centers worked as an electron relay to consecutively accept single electrons while donating two electrons to the NAD+ mimics simultaneously. The protonation of the intermediate generated active NADH mimics for biomimetic hydrogenation of the substrates via the conventional enzymatic manifold with or without the presence of natural enzymes. The pocket of the capsule encapsulated the substrate and enforced the close proximity between the substrate and the NADH mimics, forming a preorganized intermediate to shift the redox potential by 0.4 V anodically. The cobalt capsule gave methyl mandelate over a range of applied potentials, with an improved yield of 92% when operated at -1.2 V compared to that of Hantzsch ester or natural NADH. Kinetic experiments revealed a Michaelis-Menten mechanism with a Km of 7.5 mM and a Kcat of 1.1 × 10-2 s-1. This extended strategy in tandem with an enzyme exhibited a TON of 650 molE-1 with an initial TOF of 185 molE-1·h-1, outperforming relevant Rh-mediated enzymatic electrosynthesis systems and providing an attractive avenue toward advanced artificial electrosynthesis.

20.
Mol Cancer ; 23(1): 88, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702734

RESUMEN

Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Neoplasias , Proteasas Ubiquitina-Específicas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales , Terapia Molecular Dirigida , Reparación del ADN , Apoptosis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA