Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(9): 1552-1564, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524800

RESUMEN

The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.


Asunto(s)
FN-kappa B , Factor de Transcripción ReIA , FN-kappa B/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Linfocitos B/metabolismo , Sitios de Unión , Receptores de Antígenos/metabolismo
2.
Nature ; 615(7951): 292-299, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859543

RESUMEN

Emotional states influence bodily physiology, as exemplified in the top-down process by which anxiety causes faster beating of the heart1-3. However, whether an increased heart rate might itself induce anxiety or fear responses is unclear3-8. Physiological theories of emotion, proposed over a century ago, have considered that in general, there could be an important and even dominant flow of information from the body to the brain9. Here, to formally test this idea, we developed a noninvasive optogenetic pacemaker for precise, cell-type-specific control of cardiac rhythms of up to 900 beats per minute in freely moving mice, enabled by a wearable micro-LED harness and the systemic viral delivery of a potent pump-like channelrhodopsin. We found that optically evoked tachycardia potently enhanced anxiety-like behaviour, but crucially only in risky contexts, indicating that both central (brain) and peripheral (body) processes may be involved in the development of emotional states. To identify potential mechanisms, we used whole-brain activity screening and electrophysiology to find brain regions that were activated by imposed cardiac rhythms. We identified the posterior insular cortex as a potential mediator of bottom-up cardiac interoceptive processing, and found that optogenetic inhibition of this brain region attenuated the anxiety-like behaviour that was induced by optical cardiac pacing. Together, these findings reveal that cells of both the body and the brain must be considered together to understand the origins of emotional or affective states. More broadly, our results define a generalizable approach for noninvasive, temporally precise functional investigations of joint organism-wide interactions among targeted cells during behaviour.


Asunto(s)
Conducta Animal , Encéfalo , Emociones , Corazón , Animales , Ratones , Ansiedad/fisiopatología , Encéfalo/fisiología , Mapeo Encefálico , Emociones/fisiología , Corazón/fisiología , Conducta Animal/fisiología , Electrofisiología , Optogenética , Corteza Insular/fisiología , Frecuencia Cardíaca , Channelrhodopsins , Taquicardia/fisiopatología , Marcapaso Artificial
3.
Neurobiol Dis ; 199: 106573, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901783

RESUMEN

Arketamine, the (R)-enantiomer of ketamine, exhibits antidepressant-like effects in mice, though the precise molecular mechanisms remain elusive. It has been shown to reduce splenomegaly and depression-like behaviors in the chronic social defeat stress (CSDS) model of depression. This study investigated whether the spleen contributes to the antidepressant-like effects of arketamine in the CSDS model. We found that splenectomy significantly inhibited arketamine's antidepressant-like effects in CSDS-susceptible mice. RNA-sequencing analysis identified the oxidative phosphorylation (OXPHOS) pathway in the prefrontal cortex (PFC) as a key mediator of splenectomy's impact on arketamine's effects. Furthermore, oligomycin A, an inhibitor of the OXPHOS pathway, reversed the suppressive effects of splenectomy on arketamine's antidepressant-like effects. Specific genes within the OXPHOS pathways, such as COX11, UQCR11 and ATP5e, may contribute to these inhibitory effects. Notably, transforming growth factor (TGF)-ß1, along with COX11, appears to modulate the suppressive effects of splenectomy and contribute to arketamine's antidepressant-like effects. Additionally, SRI-01138, an agonist of the TGF-ß1 receptor, alleviated the inhibitory effects of splenectomy on arketamine's antidepressant-like effects. Subdiaphragmatic vagotomy also counteracted the inhibitory effects of splenectomy on arketamine's antidepressant-like effects in CSDS-susceptible mice. These findings suggest that the OXPHOS pathway and TGF-ß1 in the PFC play significant roles in the antidepressant-like effects of arketamine, mediated through the spleen-brain axis via the vagus nerve.

4.
Neurobiol Dis ; 190: 106375, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092269

RESUMEN

Patients with chronic pain often experience memory impairment, but the underlying mechanisms remain elusive. The myelin sheath is crucial for rapid and accurate action potential conduction, playing a pivotal role in the development of cognitive abilities in the central nervous system. The study reveals that myelin degradation occurs in the hippocampus of chronic constriction injury (CCI) mice, which display both chronic pain and memory impairment. Using fiber photometry, we observed diminished task-related neuronal activity in the hippocampus of CCI mice. Interestingly, the repeated administration with clemastine, which promotes myelination, counteracts the CCI-induced myelin loss and reduced neuronal activity. Notably, clemastine specifically ameliorates the impaired memory without affecting chronic pain in CCI mice. Overall, our findings highlight the significant role of myelin abnormalities in CCI-induced memory impairment, suggesting a potential therapeutic approach for treating memory impairments associated with neuropathic pain.


Asunto(s)
Dolor Crónico , Clemastina , Humanos , Animales , Ratones , Clemastina/metabolismo , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Vaina de Mielina/metabolismo , Sistema Nervioso Central , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo
5.
Eur J Immunol ; 53(8): e2350420, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37179450

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that often involves abnormal activation of regulatory IFN genes and regulation of B cells by CD4+ T cells. Radical S-adenosyl methionine domain containing 2 (RSAD2) is a viral suppressor protein regulated by type I IFN, and it has been proven to play an important regulatory role in SLE. However, the mechanism by which RSAD2 participates in the pathogenesis of SLE is unclear. In this study, we observed higher expression levels of RSAD2 in CD4+ T-cell subsets from the peripheral blood of SLE patients than in those from healthy controls by bioinformatics analysis and validation experiments. We analyzed the expression of RSAD2 in CD4+ T cells of patients with SLE and other autoimmune diseases. In addition, we found that the expression of RSAD2 in CD4+ T cells might be regulated by IFN-α, and RSAD2 significantly affected the differentiation of Th17 cells and T follicular helper (Tfh) cells. Our findings underlined that RSAD2 may promote B-cell activation by promoting the differentiation of Th17 and Tfh cells in SLE patients, a process that is regulated by IFN-α.


Asunto(s)
Lupus Eritematoso Sistémico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Humanos , Células Th17 , Interferón-alfa , Células T Auxiliares Foliculares , Subgrupos de Linfocitos T , Lupus Eritematoso Sistémico/genética , Linfocitos T Colaboradores-Inductores
6.
FASEB J ; 37(10): e23162, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37682220

RESUMEN

Aerolysin-like pore-forming protein (af-PFP) superfamily members are double-edge swords that assist the bacterial infection but shied bacteria from the host by various mechanisms in some species including the toad Bombina maxima and zebrafish. While members of this family are widely expressed in all kingdoms, especially non-bacteria species, it remains unclear whether their anti-bacterial function is conserved. LIN-24 is an af-PFP that is constitutively expressed throughout the Caenorhabditis elegans lifespan. Here, we observed that LIN-24 knockdown reduced the maximum lifespan of worms. RNA-seq analysis identified 323 differentially expressed genes (DEGs) post-LIN-24 knockdown that were enriched in "immune response" and "lysosome pathway," suggesting a possible role for LIN-24 in resisting microbial infection. In line with this, we found that Pseudomonas aeruginosa 14 (PA14) infection induced LIN-24 expression, and that survival after PA14 infection was significantly reduced by LIN-24 knockdown. In contrast, LIN-24 overexpression (LIN-24-OE) conferred protection against PA14 infection, with worms showing longer survival time and reduced bacterial load. Weighted gene co-expression network analysis of LIN-24-OE worms showed that the highest correlation module was enriched in factors related to immunity and the defense response. Finally, by predicting transcription factors from RNA-seq data and knocking down candidate transcription factors in LIN-24-OE worms, we revealed that LIN-24 may protect worms against bacterial infection by stimulating DAF-16-mediated immune responses. These findings agree with our previous studies showing an anti-microbial role for the amphibian-derived af-PFP complex ßγ-CAT, suggesting that af-PFPs may play a conserved role in combatting microbial infections. Further research is needed to determine the roles this protein family plays in other physio-pathological processes, such as metabolism, longevity, and aging.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Envejecimiento , Caenorhabditis elegans/genética , Longevidad , Proteínas de Caenorhabditis elegans/genética
7.
Eur Radiol ; 34(2): 823-832, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37624413

RESUMEN

OBJECTIVES: To explore the clinical relevance of stent-specific perivascular fat attenuation index (FAI) in patients with stent implantation. METHODS: A total of 162 consecutive patients who underwent coronary computed tomography angiography (CCTA) following stent implantation were retrospectively included. The stent-specific FAI at 2 cm adjacent to the stent edge was calculated. The endpoints were defined as target vessel revascularization (TVR) on the stented vessel after CCTA and readmission times due to chest pain after stent implantation. Binary logistic regression analysis for TVR and ordinal regression models were conducted to identify readmission times (0, 1, and ≥ 2) with generalized estimating equations on a per-stent basis. RESULTS: On a per-stent basis, 9 stents (4.5%) experienced TVR after PCI at a median 30 months' follow-up duration. Stent-specific FAI differed significantly among subgroups of patients with stent implantation and different readmission times (p = 0.002); patients with at least one readmission had higher stent-specific FAI than those without readmission (p < 0.001). Bifurcated stents (odds ratio [OR]: 11.192, p = 0.001) and stent-specific FAI (OR: 1.189, p = 0.04) were independently associated with TVR. With no readmission as a reference, stent-specific FAI (OR: 0.984, p = 0.007) was an independent predictor for hospital readmission times ≥ 2 (p = 0.003). CONCLUSION: Non-invasive stent-specific FAI derived from CCTA was found to be associated with TVR, which was a promising imaging marker for functional assessment in patients who underwent stent implantation. CLINICAL RELEVANCE STATEMENT: Noninvasive fat attenuation index adjacent to the stents edge derived from CCTA, an imaging marker reflecting the presence of inflammation acting on the neointimal tissue at the sites of coronary stenting, might be relevant clinically with target vessel revascularization. KEY POINTS: • Non-invasive stent-specific FAI derived from CCTA was associated with TVR (OR: 1.189 [95% CI: 1.007-1.043], p = 0.04) in patients who underwent stent implantation. • Stent-specific FAI significantly differed among a subgroup of patients with chest pain after stent implantation and with different readmission times (p = 0.002); the patients with at least one readmission had higher stent-specific FAI than those without readmission (p < 0.001). • Non-invasive stent-specific FAI derived from CCTA could be used as an imaging maker for the functional assessment of patients following stent implantation.


Asunto(s)
Enfermedad de la Arteria Coronaria , Intervención Coronaria Percutánea , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/cirugía , Angiografía Coronaria/métodos , Estudios Retrospectivos , Stents , Dolor en el Pecho , Resultado del Tratamiento
8.
Eur J Neurol ; 31(8): e16322, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38726639

RESUMEN

BACKGROUND AND PURPOSE: This study aimed to investigate the clinical efficacy and safety of telitacicept in patients with generalized myasthenia gravis (gMG) who tested positive for acetylcholine receptor antibodies or muscle-specific kinase antibodies and were receiving standard-of-care therapy. METHODS: Patients meeting the eligibility criteria were randomly assigned to receive telitacicept subcutaneously once a week for 24 weeks in addition to standard-of-care treatment. The primary efficacy endpoint was the mean change in the quantitative myasthenia gravis (QMG) score from baseline to week 24. Secondary efficacy endpoints included mean change in QMG score from baseline to week 12 and gMG clinical absolute score from baseline to week 24. Additionally, safety, tolerability and pharmacodynamics were assessed. RESULTS: Twenty-nine of the 41 patients screened were randomly selected and enrolled. The mean (± standard deviation [SD]) reduction in QMG score from baseline to week 24 was 7.7 (± 5.34) and 9.6 (± 4.29) in the 160 mg and 240 mg groups, respectively. At week 12, mean reductions in QMG scores for these two groups were 5.8 (± 5.85) and 9.5 (± 5.03), respectively, indicating rapid clinical improvement. Safety analysis revealed no adverse events leading to discontinuation or mortalities. All patients showed consistent reductions in serum immunoglobulin (Ig) A, IgG and IgM levels throughout the study. CONCLUSION: Telitacicept demonstrated safety, good tolerability and reduced clinical severity throughout the study period. Further validation of the clinical efficacy of telitacicept in gMG will be conducted in an upcoming phase 3 clinical trial.


Asunto(s)
Miastenia Gravis , Humanos , Miastenia Gravis/tratamiento farmacológico , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Resultado del Tratamiento , Receptores Colinérgicos/inmunología
9.
Fish Shellfish Immunol ; 145: 109347, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160900

RESUMEN

Hemocyanin is the main respiratory protein of arthropods and is formed by hexameric and/or oligomeric subunits. Due to changes in the living environment and gene rearrangement, various hemocyanin subtypes and subunits evolved in crustaceans. This paper reviews the various hemocyanin subtypes and isoforms in shrimp and analyses published genomic data of sixteen hemocyanin family genes from Litopenaeus vannamei to explore the evolution of hemocyanin genes, subunits, and protein structure. Analysis of hemocyanin subtypes distribution and structure in various tissues was also performed and related to multiple and tissue-specific functions, i.e., immunological activity, immune signaling, phenoloxidase activity, modulation of microbiota homeostasis, and energy metabolism. The functional diversity of shrimp hemocyanin due to molecular polymorphism, transcriptional regulation, alternative splicing, degradation into functional peptides, interaction with other proteins or genes, and structural differences will also be highlighted for future research. Inferences would be drawn from other crustaceans to explain how evolution has changed the structure-function of hemocyanin and its implication for evolutionary research into the multifunctionality of hemocyanin and other related proteins in shrimp.


Asunto(s)
Hemocianinas , Penaeidae , Animales , Isoformas de Proteínas/genética , Péptidos/genética , Empalme Alternativo
10.
BMC Vet Res ; 20(1): 110, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500105

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation. RESULTS: Canine AD-MSCs promoted neural functional recovery, reduced neuronal apoptosis, and inhibited the activation of microglia and astrocytes in TBI rats. According to the results in vivo, we further investigated the regulatory mechanism of AD-MSCs on activated microglia by co-culture in vitro. Finally, we found that canine AD-MSCs promoted their polarization to the M2 phenotype, and inhibited their polarization to the M1 phenotype. What's more, AD-MSCs could reduce the migration, proliferation and Inflammatory cytokines of activated microglia, which is able to inhibit inflammation in the central system. CONCLUSIONS: Collectively, the present study demonstrates that transplantation of canine AD-MSCs can promote functional recovery in TBI rats via inhibition of neuronal apoptosis, glial cell activation and central system inflammation, thus providing a theoretical basis for canine AD-MSCs therapy for TBI in veterinary clinic.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades de los Perros , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades de los Roedores , Ratas , Animales , Perros , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/veterinaria , Microglía , Macrófagos , Inflamación/veterinaria , Trasplante de Células Madre Mesenquimatosas/veterinaria , Trasplante de Células Madre Mesenquimatosas/métodos
11.
Skin Res Technol ; 30(7): e13846, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967217

RESUMEN

BACKGROUND: Although observational studies have suggested a correlation between vitiligo and rheumatic diseases, conclusive evidence supporting a causal relationship is still lacking. Therefore, this study aims to explore the potential causal relationship between vitiligo and rheumatic diseases. METHODS: Using genome-wide association studies, we performed a two-sample Mendelian randomization (MR) analysis. In our analysis, the random-effects inverse variance weighted (IVW) method was predominantly employed, followed by several sensitivity analyses, which include heterogeneity, horizontal pleiotropy, outliers, and "leave-one-out" analyses. RESULTS: The genetically predicted vitiligo was associated with an increased risk of rheumatoid arthritis (RA) (OR, 1.47; 95% confidence interval [CI], 1.29-1.68; p < 0.001), and systemic lupus erythematosus (SLE) (OR, 1.22; 95% CI, 1.06-1.39; p = 0.005). The causal associations were supported by sensitivity analyses. In Sjögren's syndrome and ankylosing spondylitis, no causal relationship with vitiligo was found in the study. CONCLUSION: Our MR results support the causal effect that vitiligo leads to a higher risk of RA and SLE. Individuals with vitiligo should be vigilant for the potential development of RA and SLE. Managing and addressing this potential requires regular monitoring.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Enfermedades Reumáticas , Vitíligo , Vitíligo/genética , Humanos , Predisposición Genética a la Enfermedad/genética , Enfermedades Reumáticas/genética , Enfermedades Reumáticas/complicaciones , Polimorfismo de Nucleótido Simple/genética , Artritis Reumatoide/genética , Artritis Reumatoide/complicaciones , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/complicaciones
12.
Artículo en Inglés | MEDLINE | ID: mdl-38619440

RESUMEN

BACKGROUND: Lupus erythematosus (LE) is a spectrum of autoimmune diseases. Due to the complexity of cutaneous LE (CLE), clinical skin image-based artificial intelligence is still experiencing difficulties in distinguishing subtypes of LE. OBJECTIVES: We aim to develop a multimodal deep learning system (MMDLS) for human-AI collaboration in diagnosis of LE subtypes. METHODS: This is a multi-centre study based on 25 institutions across China to assist in diagnosis of LE subtypes, other eight similar skin diseases and healthy subjects. In total, 446 cases with 800 clinical skin images, 3786 multicolor-immunohistochemistry (multi-IHC) images and clinical data were collected, and EfficientNet-B3 and ResNet-18 were utilized in this study. RESULTS: In the multi-classification task, the overall performance of MMDLS on 13 skin conditions is much higher than single or dual modals (Sen = 0.8288, Spe = 0.9852, Pre = 0.8518, AUC = 0.9844). Further, the MMDLS-based diagnostic-support help improves the accuracy of dermatologists from 66.88% ± 6.94% to 81.25% ± 4.23% (p = 0.0004). CONCLUSIONS: These results highlight the benefit of human-MMDLS collaborated framework in telemedicine by assisting dermatologists and rheumatologists in the differential diagnosis of LE subtypes and similar skin diseases.

13.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34117120

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in ß-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Mutación/genética , Contracción Miocárdica/genética , Miosinas Ventriculares/genética , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Línea Celular , Tamaño de la Célula , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Miofibrillas/metabolismo
14.
J Integr Plant Biol ; 66(6): 1126-1147, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38629459

RESUMEN

Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Senescencia de la Planta , Ácido Salicílico , Factores de Transcripción , Ácido Salicílico/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Senescencia de la Planta/genética , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ADN
15.
Clin Immunol ; 255: 109710, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499961

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by aberrant development of B cells and excess production of autoantibodies. Our team previously reported that absent in melanoma 2 (AIM2) regulates B-cell differentiation via the Bcl-6-Blimp-1 axis. Notably, in keyhole limpet hemocyanin (KLH)-immunized CD19creAim2f/f mice, the frequency of CD19+CD44+ B cells was decreased, accompanied by a weakened KLH response, indicating that AIM2 deficiency suppressed the antigen-induced B-cell immune response by downregulating the expression of CD44. CD44, a surface marker of T-cell activation and memory, was overexpressed in T cells of SLE patients, but its roles and mechanism in B cells have not been elucidated. In the current work, we revealed that CD44 expression was upregulated in the B cells of SLE patients and MRL/lpr mice, accompanied by elevated AIM2 expression in CD19+CD44+ B-cell subsets, and that its ligand hyaluronan (HA) was also abnormally increased in the serum of SLE patients. Notably, the extrafollicular (EF) region serves as an important site of B-cell activation and differentiation separate from the germinal center, while CD44 expression is concentrated in EF B cells. In addition, in vitro experiments demonstrated that the HA-CD44 interaction stimulated B-cell activation and upregulated the expression of AIM2 and the transcription factor STAT3. Either blocking CD44, knocking down AIM2 expression or suppressing the activity of STAT3 in B cells suppressed B-cell activation and proliferation. Moreover, blocking CD44 downregulated the expression of STAT3 and AIM2, while suppressing the activity of STAT3 decreased the expression of CD44 and AIM2. In summary, overexpressed CD44 in B cells might participate in B-cell activation and proliferation in the EF region via the HA-CD44-AIM2 pathway, providing potential targets for SLE therapy.


Asunto(s)
Ácido Hialurónico , Lupus Eritematoso Sistémico , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autoanticuerpos , Linfocitos B , Proteínas de Unión al ADN/metabolismo , Receptores de Hialuranos/genética , Ratones Endogámicos MRL lpr
16.
J Med Virol ; 95(1): e28340, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36420584

RESUMEN

Accumulating evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs the adaptive immune system during acute infection. Still, it remains largely unclear whether the frequency and functions of T and B cells return to normal after the recovery of Coronavirus Disease 2019 (COVID-19). Here, we analyzed immune repertoires and SARS-CoV-2-specific neutralization antibodies in a prospective cohort of 40 COVID-19 survivors with a 6-month follow-up after hospital discharge. Immune repertoire sequencing revealed abnormal T- and B-cell expression and function with large T cell receptor/B cell receptor clones, decreased diversity, abnormal class-switch recombination, and somatic hypermutation. A decreased number of B cells but an increased proportion of CD19+ CD138+ B cells were found in COVID-19 survivors. The proportion of CD4+ T cells, especially circulating follicular helper T (cTfh) cells, was increased, whereas the frequency of CD3+ CD4- T cells was decreased. SARS-CoV-2-specific neutralization IgG and IgM antibodies were identified in all survivors, especially those recorded with severe COVID-19 who showed a higher inhibition rate of neutralization antibodies. All severe cases complained of more than one COVID-19 sequelae after 6 months of recovery. Overall, our findings indicate that SARS-CoV-2-specific antibodies remain detectable even after 6 months of recovery. Because of their abnormal adaptive immune system with a low number of CD3+ CD4- T cells and high susceptibility to infections, COVID-19 patients might need more time and medical care to fully recover from immune abnormalities and tissue damage.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Estudios Prospectivos , Linfocitos B , Anticuerpos Antivirales , Sobrevivientes
18.
Br J Clin Pharmacol ; 89(3): 1152-1161, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260320

RESUMEN

AIMS: The pharmacokinetics of levetiracetam (LEV) significantly changed during pregnancy. It is a great challenge to predict the adjusted doses of LEV to reach the preconception target concentrations. This study aimed to establish a population pharmacokinetic model of LEV in women with epilepsy (WWE) during pregnancy to analyse the factors of pharmacokinetic variability and to develop a model-based individualized dosing regimen. METHODS: A total of 166 concentration-time points from 37 WWE during pregnancy treated with LEV were collected to analyse LEV pharmacokinetics with nonlinear mixed-effects modelling. The dosing regimen was optimized by Monte Carlo simulations based on the final model. RESULTS: The LEV pharmacokinetics in pregnant WWE were best described by a 1-compartment model of first-order absorption and elimination. The population typical value of apparent clearance (CL/F) in the final model was estimated to be 3.82 L/h (95% confidence interval 3.283-4.357 L/h) with a relative standard error of 7.2%. Both total body weight (TBW) and trimester of pregnancy were significantly associated with LEV-CL/F during pregnancy; LEV-CL/F increased by 42.72% when TBW increased from 55 to 65 kg from the first trimester to the second trimester. Monte Carlo simulations showed that dosing regimens for LEV should be individualized based on the patient's TBW and trimester of pregnancy to maximize the likelihood of achieving the therapeutic range. CONCLUSION: This first population pharmacokinetic study of LEV in WWE during pregnancy supports the use of a weight-based and pregnancy-based dosing regimen and can lay a foundation for further optimizing the individualized dosing regimens.


Asunto(s)
Anticonvulsivantes , Epilepsia , Embarazo , Femenino , Humanos , Levetiracetam/uso terapéutico , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Primer Trimestre del Embarazo , Método de Montecarlo
19.
Pediatr Blood Cancer ; 70(10): e30578, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37449940

RESUMEN

BACKGROUND: Methotrexate is widely recommended as a first-line treatment for the intensive systemic and consolidation phases of childhood acute lymphoblastic leukemia. However, methotrexate-induced nephrotoxicity is a severe adverse reaction, of which the mechanisms remain unclear. METHODS: An untargeted metabolomics analysis of serum from childhood acute lymphoblastic leukemia patients with delayed methotrexate excretion, with or without acute kidney injury, was performed to identify altered metabolites and metabolic pathways. An independent external validation cohort and in vitro HK-2 cell assays further verified the candidate metabolites, and explored the mechanisms underlying the nephrotoxicity of methotrexate. RESULTS: Four metabolites showed significant differences between normal excretion and delayed excretion, seven metabolites reflected the differences between groups with or without acute kidney injury, and six pathways were finally enriched. In particular, oxidized glutathione was confirmed as a candidate metabolite involved in the toxicity of methotrexate. We further explored the role of glutathione deprivation-induced ferroptosis on methotrexate cytotoxicity, and it was found that methotrexate overload significantly reduced cell viability, triggered reactive oxygen species and intracellular Fe2+ accumulation, and altered the expression of ferroptosis-related proteins in HK-2 cells. These methotrexate-induced changes were alleviated or reversed by the administration of a ferroptosis inhibitor, further suggesting that ferroptosis promoted methotrexate-induced cytotoxicity in HK-2 cells. CONCLUSIONS: Our findings revealed complex metabolomic profiles and provided novel insights into the mechanism by which ferroptosis contributes to the nephrotoxic effects of methotrexate.


Asunto(s)
Lesión Renal Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Metotrexato/efectos adversos , Lesión Renal Aguda/inducido químicamente , Metabolómica , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
20.
Eur J Clin Pharmacol ; 79(7): 897-913, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37261481

RESUMEN

BACKGROUND AND OBJECTIVES: Tacrolimus (TAC) has been increasingly used in patients with non-transplant settings. Because of its large between-subject variability, several population pharmacokinetic (PPK) studies have been performed to facilitate individualized therapy. This review summarized published PPK models of TAC in non-transplant patients, aiming to clarify factors affecting PKs of TAC and identify the knowledge gap that may require further research. METHODS: The PubMed, Embase databases, and Cochrane Library, as well as related references, were searched from the time of inception of the databases to February 2023, to identify TAC population pharmacokinetic studies modeled in non-transplant patients using a non-linear mixed-effects modeling approach. RESULTS: Sixteen studies, all from Asian countries (China and Korea), were included in this study. Of these studies, eleven and four were carried out in pediatric and adult patients, respectively. One-compartment models were the commonly used structural models for TAC. The apparent clearance (CL/F) of TAC ranged from 2.05 to 30.9 L·h-1 (median of 14.9 L·h-1). Coadministered medication, genetic factors, and weight were the most common covariates affecting TAC-CL/F, and variability in the apparent volume of distribution (V/F) was largely explained by weight. Coadministration with Wuzhi capsules reduced CL/F by about 19 to 43%. For patients with CYP3A5*1*1 and *1*3 genotypes, the CL/F was 39-149% higher CL/F than patients with CYP3A5*1*1. CONCLUSION: The optimal TAC dosage should be adjusted based on the patient's co-administration, body weight, and genetic information (especially CYP3A5 genotype). Further studies are needed to assess the generalizability of the published models to other ethnic groups. Moreover, external validation should be frequently performed to improve the clinical practicality of the models.


Asunto(s)
Inmunosupresores , Tacrolimus , Adulto , Humanos , Niño , Tacrolimus/farmacocinética , Inmunosupresores/farmacocinética , Citocromo P-450 CYP3A/genética , Modelos Biológicos , Etnicidad , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA