Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36880172

RESUMEN

Lysine 2-hydroxyisobutylation (Khib), which was first reported in 2014, has been shown to play vital roles in a myriad of biological processes including gene transcription, regulation of chromatin functions, purine metabolism, pentose phosphate pathway and glycolysis/gluconeogenesis. Identification of Khib sites in protein substrates represents an initial but crucial step in elucidating the molecular mechanisms underlying protein 2-hydroxyisobutylation. Experimental identification of Khib sites mainly depends on the combination of liquid chromatography and mass spectrometry. However, experimental approaches for identifying Khib sites are often time-consuming and expensive compared with computational approaches. Previous studies have shown that Khib sites may have distinct characteristics for different cell types of the same species. Several tools have been developed to identify Khib sites, which exhibit high diversity in their algorithms, encoding schemes and feature selection techniques. However, to date, there are no tools designed for predicting cell type-specific Khib sites. Therefore, it is highly desirable to develop an effective predictor for cell type-specific Khib site prediction. Inspired by the residual connection of ResNet, we develop a deep learning-based approach, termed ResNetKhib, which leverages both the one-dimensional convolution and transfer learning to enable and improve the prediction of cell type-specific 2-hydroxyisobutylation sites. ResNetKhib is capable of predicting Khib sites for four human cell types, mouse liver cell and three rice cell types. Its performance is benchmarked against the commonly used random forest (RF) predictor on both 10-fold cross-validation and independent tests. The results show that ResNetKhib achieves the area under the receiver operating characteristic curve values ranging from 0.807 to 0.901, depending on the cell type and species, which performs better than RF-based predictors and other currently available Khib site prediction tools. We also implement an online web server of the proposed ResNetKhib algorithm together with all the curated datasets and trained model for the wider research community to use, which is publicly accessible at https://resnetkhib.erc.monash.edu/.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Animales , Ratones , Humanos , Lisina/metabolismo , Proteínas/metabolismo , Algoritmos , Aprendizaje Automático
2.
FASEB J ; 38(4): e23469, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38358361

RESUMEN

The adenopituitary secretes follicle-stimulating hormone (FSH), which plays a crucial role in regulating the growth, development, and reproductive functions of organisms. Investigating the process of FSH synthesis and secretion can offer valuable insights into potential areas of focus for reproductive research. Epidermal growth factor (EGF) is a significant paracrine/autocrine factor within the body, and studies have demonstrated its ability to stimulate FSH secretion in animals. However, the precise mechanisms that regulate this action are still poorly understood. In this research, in vivo and in vitro experiments showed that the activation of epidermal growth factor receptor (EGFR) by EGF induces the upregulation of miR-27b-3p and that miR-27b-3p targets and inhibits Foxo1 mRNA expression, resulting in increased FSH synthesis and secretion. In summary, this study elucidates the precise molecular mechanism through which EGF governs the synthesis and secretion of FSH via the EGFR/miR-27b-3p/FOXO1 pathway.


Asunto(s)
Factor de Crecimiento Epidérmico , MicroARNs , Animales , Ratas , Transporte Biológico , Receptores ErbB/genética , Hormona Folículo Estimulante , MicroARNs/genética
3.
Nano Lett ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836517

RESUMEN

As a potential alternative to antibiotics, hyperbranched poly(ionic liquid)s (HPILs) have demonstrated significant potential in combating bacterial biofilms. However, their high cation density poses a high risk of toxicity, greatly limiting their in vivo applications. In this study, we constructed a biocompatible HPIL (HPIL-Glu) from a hyperbranched polyurea core with modified terminals featuring charge-convertible ionic liquids. These ionic liquid moieties consist of an ammonium-based cation and a gluconate (Glu) organic counter. HPIL-Glu could form a homogeneous nanoassembly in water and exhibited a pH-responsive charge conversion property. Under neutral conditions, Glu shielded the positively charged surface, minimizing the toxicity. In a mildly acidic environment, Glu protonation exposes cationic moieties to biofilm eradication. Comprehensive antimicrobial assessments demonstrate that HPIL-Glu effectively kills bacteria and promotes the healing of bacteria-infected chronic wounds. Furthermore, prolonged exposure to HPIL-Glu does not induce antimicrobial resistance.

4.
Biochem Biophys Res Commun ; 692: 149360, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38081108

RESUMEN

BACKGROUND: Myocardial infarction (MI) dramatically changes the mechanical stress, which is intensified by the fibrotic remodeling. Integrins, especially the αV subunit, mediate mechanical signal and mechanoparacrine of transforming growth factor ß1 (TGF-ß1) in various organ fibrosis by activating CFs into myofibroblasts (MFBs). We investigated a possible role of integrin αV mediated mechanoparacrine of TGF-ß1 in MFBs activation for fibrous reparation in mice with MI. METHODS: Heart samples from MI, sham, or MI plus cilengitide (14 mg/kg, specific integrin αV inhibitor) treated mice, underwent functional and morphological assessments by echocardiography, and histochemistry on 7, 14 and 28 days post-surgery. The mechanical and ultrastructural changes of the fibrous scar were further evaluated by atomic mechanics microscope (AFM), immunofluorescence, second harmonic generation (SHG) imaging, polarized light and scanning electron microscope, respectively. Hydroxyproline assay was used for total collagen content, and western blot for protein expression profile examination. Fibroblast bioactivities, including cell shape, number, Smad2/3 signal and expression of extracellular matrix (ECM) related proteins, were further evaluated by microscopic observation and immunofluorescence in polyacrylamide (PA) hydrogel with adjustable stiffness, which was re-explored in fibroblast cultured on stiff matrix after silencing of integrin αV. The content of total and free TGF-ß1 was tested by enzyme-linked immunosorbent assay (ELISA) in both infarcted tissue and cell samples. RESULT: Increased stiffness with heterogeneity synchronized with integrin αV and alpha smooth muscle actin (α-SMA) positive MFBs accumulation in those less mature fibrous areas. Cilengitide abruptly reduced collagen content and disrupted collagen alignment, which also decreased TGF-ß1 bioavailability, Smad2/3 phosphorylation, and α-SMA expression in the fibrous area. Accordingly, fibroblast on stiff but not soft matrix exhibited obvious MFB phenotype, as evidenced by enlarged cell, hyperproliferation, well-developed α-SMA fibers, and elevated ECM related proteins, while silencing of integrin αV almost abolished this switch via attenuating paracrine of TGF-ß1 and nuclear translocation of Smad2/3. CONCLUSION: This study illustrated that increased tissue stiffness activates CFs into MFBs by integrin αV mediated mechanoparacrine of TGF-ß1, especially in immature scar area, which ultimately promotes fibrous scar maturation.


Asunto(s)
Infarto del Miocardio , Miofibroblastos , Animales , Ratones , Actinas/metabolismo , Cicatriz/metabolismo , Colágeno/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis , Integrina alfaV/metabolismo , Infarto del Miocardio/patología , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
5.
Stem Cells ; 41(7): 711-723, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37210668

RESUMEN

Enhanced adipogenic differentiation of mesenchymal stem cells (MSCs) is considered as a major risk factor for steroid-induced osteonecrosis of the femoral head (SOFNH). The role of microRNAs during this process has sparked interest. miR-486-5p expression was down-regulated significantly in femoral head bone tissues of both SONFH patients and rat models. The purpose of this study was to reveal the role of miR-486-5p on MSCs adipogenesis and SONFH progression. The present study showed that miR-486-5p could significantly inhibit adipogenesis of 3T3-L1 cells by suppressing mitotic clonal expansion (MCE). And upregulated expression of P21, which was caused by miR-486-5p mediated TBX2 decrease, was responsible for inhibited MCE. Further, miR-486-5p was demonstrated to effectively inhibit steroid-induced fat formation in the femoral head and prevented SONFH progression in a rat model. Considering the potent effects of miR-486-5p on attenuating adipogenesis, it seems to be a promising target for the treatment of SONFH.


Asunto(s)
MicroARNs , Osteonecrosis , Animales , Ratas , Adipogénesis/genética , Diferenciación Celular/genética , Cabeza Femoral/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteonecrosis/inducido químicamente , Osteonecrosis/metabolismo , Esteroides/efectos adversos
6.
Chemistry ; : e202401094, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797717

RESUMEN

A 'passivated precursor' approach is developed for the efficient synthesis and isolation of all-alkynyl-protected gold nanoclusters. Direct reduction of dpa-passivated precursor Au-dpa (Hdpa = 2,2'-dipyridylamine) in one-pot under ambient conditions gives a series of clusters including Au22(C≡CR)18 (R = -C6H4-2-F), Au36(C≡CR)24, Au44(C≡CR)28, Au130(C≡CR)50, and Au144(C≡CR)60. These clusters can be well separated via column chromatography. The overall isolation yield of this series of clusters is 40% (based on gold), which is much improved in comparison with previous approaches. It is notable that the molecular structure of the giant cluster Au130(C≡CR)50 is revealed, which presents important information for understanding the structure of the mysterious Au130 nanoclusters. Theoretical calculations indicated Au130(C≡CR)50 has a smaller HOMO-LUMO gap than Au130(S-C6H4-4-CH3)50. This facile and reliable synthetic approach will greatly accelerate further studies on all-alkynyl-protected gold nanoclusters.

7.
Environ Sci Technol ; 58(18): 7968-7976, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38680115

RESUMEN

Nitrogen oxide (NOx) emissions from heavy-duty diesel vehicles (HDDVs) have adverse effects on human health and the environment. On-board monitoring (OBM), which can continuously collect vehicle performance and NOx emissions throughout the operation lifespan, is recognized as the core technology for future vehicle in-use compliance, but its large-scale application has not been reported. Here, we utilized OBM data from 22,520 HDDVs in China to evaluate their real-world NOx emissions. Our findings showed that China VI HDDVs had a 73% NOx emission reduction compared with China V vehicles, but a considerable proportion still faced a significant risk of higher NOx emissions than the corresponding limits. The unsatisfactory efficiency of the emission treatment system under disadvantageous driving conditions (e.g., low speed or ambient temperature) resulted in the incompliance of NOx emissions, especially for utility vehicles (sanitation/garbage trucks). Furthermore, the observed intertrip and seasonal variability of NOx emissions demonstrated the need for a long-term continuous monitoring protocol instead of instantaneous evaluation for the OBM. With both functions of emission monitoring and malfunction diagnostics, OBM has the potential to accurately verify the in-use compliance status of large-scale HDDVs and discern the responsibility of high-emitting activities from manufacturers, vehicle operators, and driving conditions.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Óxidos de Nitrógeno , Emisiones de Vehículos , Emisiones de Vehículos/análisis , Monitoreo del Ambiente/métodos , Óxidos de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , China
8.
Macromol Rapid Commun ; : e2400108, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639216

RESUMEN

Various acoustic materials are developed to resolve noise pollution problem in many industries. Especially, materials with porous structure are broadly used to absorb sound energy in civil construction and transportation area. Polyurethane (PU) porous materials possess excellent damping properties, good toughness, and well-developed pore structures, which have a broad application prospect in sound absorption field. This work aims to summarize the recent progress of fabrication and structure for PU porous materials in sound absorption application. The sound absorption mechanisms of porous materials are introduced. Different kinds of structure for typical PU porous materials in sound absorption application are covered and highlighted, which include PU foam, modified PU porous materials, aerogel, templated PU, and special PU porous materials. Finally, the development direction and existing problems of PU material in sound absorption application are briefly prospected. It can be expected that porous PU with high sound absorption coefficient can be obtained by using some facile methods. The design and accurate regulation of porous structures or construction of multilayer sound absorption structure is favorably recommended to fulfill the high demand of industrial and commercial applications in the future work.

9.
Phys Chem Chem Phys ; 26(10): 8539-8546, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38412426

RESUMEN

Identifying high-efficiency solar photovoltaic systems with two-dimensional (2D) materials is still an urgent challenge to meet modern energy requirements. Very recently, a 2D heterostructure with type-II band alignment has been confirmed to be more favorable for application in photoelectric conversion. However, the staggered band offset of 2D type-II heterostructures cannot always be guaranteed, nor the intrinsic hindrance mechanism of carrier recombination being clear. In this study, taking the emerging ZrSSe/HfSSe van der Waals heterostructure (vdWH) as a generic example, a boosting strategy for improving the photoelectric performances of 2D vdWHs is proposed. Through a series of in-depth systematic research studies based on first-principles, we demonstrate that via applying a vertical strain, an anticipated band alignment transition from type-I to favorable type-II of this ZrSSe/HfSSe vdWH can be induced due to the interfacial charge redistribution, during which a corresponding enlarged photocurrent can be detected from the latter based device compared to the former. Essentially, such enhanced photocurrent at the incident photon energy (Eph) around the band gap is attributed to the suppressed recombination rate of photoexcited carriers. Moreover, when Eph is increased into the visible light region, the photoelectric conversion performances can be further controlled by vertical strain. These generalized findings not only provide an effective manipulation strategy for enhancing the performances of 2D solar photovoltaic systems, but the intrinsic physical mechanism can also be extended to the next practical design and regulation of other 2D photovoltaic devices.

10.
Bioorg Chem ; 143: 107019, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096683

RESUMEN

The discovery and development of CDK2 inhibitors has currently been validated as a hot topic in cancer therapy. Herein, a series of novel N-(pyridin-3-yl)pyrimidin-4-amine derivatives were designed and synthesized as potent CDK2 inhibitors. Among them, the most promising compound 7l presented a broad antiproliferative efficacy toward diverse cancer cells MV4-11, HT-29, MCF-7, and HeLa with IC50 values of 0.83, 2.12, 3.12, and 8.61 µM, respectively, which were comparable to that of Palbociclib and AZD5438. Interestingly, these compounds were less toxic on normal embryonic kidney cells HEK293 with high selectivity index. Further mechanistic studies indicated 7l caused cell cycle arrest and apoptosis on HeLa cells in a concentration-dependent manner. Moreover, 7l manifested potent and similar CDK2/cyclin A2 nhibitory activity to AZD5438 with an IC50 of 64.42 nM. These findings revealed that 7l could serve as ahighly promisingscaffoldfor CDK2 inhibitors as potential anticancer agents and functional probes.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Quinasa 2 Dependiente de la Ciclina , Relación Estructura-Actividad , Línea Celular Tumoral , Células HeLa , Aminas/farmacología , Células HEK293 , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Proliferación Celular , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias/tratamiento farmacológico
11.
Bioorg Chem ; 147: 107381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669781

RESUMEN

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.


Asunto(s)
Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos , Hiperuricemia , Transportadores de Anión Orgánico , Proteínas de Transporte de Catión Orgánico , Hiperuricemia/tratamiento farmacológico , Humanos , Animales , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Urato Oxidasa/química , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Ratones , Masculino , Ácido Gálico/química , Ácido Gálico/farmacología , Ácido Gálico/análogos & derivados , Ratas Sprague-Dawley
12.
J Nanobiotechnology ; 22(1): 275, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778401

RESUMEN

BACKGROUND: Acute gouty is caused by the excessive accumulation of Monosodium Urate (MSU) crystals within various parts of the body, which leads to a deterioration of the local microenvironment. This degradation is marked by elevated levels of uric acid (UA), increased reactive oxygen species (ROS) production, hypoxic conditions, an upsurge in pro-inflammatory mediators, and mitochondrial dysfunction. RESULTS: In this study, we developed a multifunctional nanoparticle of polydopamine-platinum (PDA@Pt) to combat acute gout by leveraging mild hyperthermia to synergistically enhance UA degradation and anti-inflammatory effect. Herein, PDA acts as a foundational template that facilitates the growth of a Pt shell on the surface of its nanospheres, leading to the formation of the PDA@Pt nanomedicine. Within this therapeutic agent, the Pt nanoparticle catalyzes the decomposition of UA and actively breaks down endogenous hydrogen peroxide (H2O2) to produce O2, which helps to alleviate hypoxic conditions. Concurrently, the PDA component possesses exceptional capacity for ROS scavenging. Most significantly, Both PDA and Pt shell exhibit absorption in the Near-Infrared-II (NIR-II) region, which not only endow PDA@Pt with superior photothermal conversion efficiency for effective photothermal therapy (PTT) but also substantially enhances the nanomedicine's capacity for UA degradation, O2 production and ROS scavenging enzymatic activities. This photothermally-enhanced approach effectively facilitates the repair of mitochondrial damage and downregulates the NF-κB signaling pathway to inhibit the expression of pro-inflammatory cytokines. CONCLUSIONS: The multifunctional nanomedicine PDA@Pt exhibits exceptional efficacy in UA reduction and anti-inflammatory effects, presenting a promising potential therapeutic strategy for the management of acute gout.


Asunto(s)
Gota , Indoles , Polímeros , Especies Reactivas de Oxígeno , Ácido Úrico , Gota/tratamiento farmacológico , Gota/metabolismo , Gota/terapia , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Polímeros/química , Indoles/química , Indoles/farmacología , Nanopartículas/química , Platino (Metal)/química , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Humanos , Peróxido de Hidrógeno/metabolismo , Hipertermia Inducida/métodos , Células RAW 264.7 , Terapia Fototérmica/métodos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Masculino
13.
Cell Mol Life Sci ; 80(9): 261, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37597099

RESUMEN

BACKGROUND: The imbalance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is not only the primary pathological feature but also a major contributor to the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Cellular senescence is one of the main causes of imbalanced BMSCs differentiation. The purpose of this study was to reveal whether cellular senescence could participate in the progression of SONFH and the related mechanisms. METHODS: The rat SONFH model was constructed, and rat BMSCs were extracted. Aging-related indicators were detected by SA-ß-Gal staining, qRT-PCR and Western Blot experiments. Using H2O2 to construct a senescent cell model, and overexpressing and knocking down miR-601 and SIRT1 in hBMSCs, the effect on BMSCs differentiation was explored by qRT-PCR, Western Blot experiment, oil red O staining (ORO), alizarin red staining (ARS), and luciferase reporter gene experiment. A rat SONFH model was established to test the effects of miR-601 and metformin in vivo. RESULTS: The current study showed that glucocorticoids (GCs)-induced BMSCs senescence, which caused imbalanced osteogenesis and adipogenesis of BMSCs, was responsible for the SONFH progression. Further, elevated miR-601 caused by GCs was demonstrated to contribute to BMSCs senescence through targeting SIRT1. In addition, the anti-aging drug metformin was shown to be able to alleviate GCs-induced BMSCs senescence and SONFH progression. CONCLUSIONS: Considering the role of BMSCs aging in the progression of SONFH, this provides a new idea for the prevention and treatment of SONFH.


Asunto(s)
Células Madre Mesenquimatosas , Metformina , MicroARNs , Osteonecrosis , Animales , Ratas , Cabeza Femoral , Glucocorticoides , Peróxido de Hidrógeno , MicroARNs/genética , Sirtuina 1/genética
14.
Nucleic Acids Res ; 50(D1): D1172-D1178, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718716

RESUMEN

The availability of genetic variants, together with phenotypic annotations from model organisms, facilitates comparing these variants with equivalent variants in humans. However, existing databases and search tools do not make it easy to scan for equivalent variants, namely 'matching variants' (MatchVars) between humans and other organisms. Therefore, we developed an integrated search engine called ConVarT (http://www.convart.org/) for matching variants between humans, mice, and Caenorhabditis elegans. ConVarT incorporates annotations (including phenotypic and pathogenic) into variants, and these previously unexploited phenotypic MatchVars from mice and C. elegans can give clues about the functional consequence of human genetic variants. Our analysis shows that many phenotypic variants in different genes from mice and C. elegans, so far, have no counterparts in humans, and thus, can be useful resources when evaluating a relationship between a new human mutation and a disease.


Asunto(s)
Bases de Datos Genéticas , Variación Genética/genética , Motor de Búsqueda , Programas Informáticos , Animales , Caenorhabditis elegans , Humanos , Ratones
15.
Nucleic Acids Res ; 50(W1): W434-W447, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524557

RESUMEN

The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of biological and chemical molecules in an efficient, accessible and accurate manner. Notwithstanding several computational tools that characterize protein or nucleic acids data, there are no one-stop computational toolkits that comprehensively characterize a wide range of biomolecules. We address this vital need by developing a holistic platform that generates features from sequence and structural data for a diverse collection of molecule types. Our freely available and easy-to-use iFeatureOmega platform generates, analyzes and visualizes 189 representations for biological sequences, structures and ligands. To the best of our knowledge, iFeatureOmega provides the largest scope when directly compared to the current solutions, in terms of the number of feature extraction and analysis approaches and coverage of different molecules. We release three versions of iFeatureOmega including a webserver, command line interface and graphical interface to satisfy needs of experienced bioinformaticians and less computer-savvy biologists and biochemists. With the assistance of iFeatureOmega, users can encode their molecular data into representations that facilitate construction of predictive models and analytical studies. We highlight benefits of iFeatureOmega based on three research applications, demonstrating how it can be used to accelerate and streamline research in bioinformatics, computational biology, and cheminformatics areas. The iFeatureOmega webserver is freely available at http://ifeatureomega.erc.monash.edu and the standalone versions can be downloaded from https://github.com/Superzchen/iFeatureOmega-GUI/ and https://github.com/Superzchen/iFeatureOmega-CLI/.


Asunto(s)
Biología Computacional , Ligandos , Programas Informáticos , Proteínas
16.
Altern Ther Health Med ; 30(2): 97-101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37856820

RESUMEN

Objective: To evaluate the performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical pathogenic microorganisms. Methods: Blood culture-positive specimens were collected from inpatients in our hospital from March to December 2022 and identified using VITEK 2XL (biochemical), VITEK MS (colony), VITEK MS (bacterial membrane) and VITEK MS (separating gel) methods, respectively, to compare the compliance rate and identification values of the four methods. Results: A total of 280 strains were included in the analysis, including 155 (55.36%) Gram-negative and 125 (44.64%) Gram-positive strains. 279 (99.64%) of the 280 strains were identified by VITEK 2XL (biochemical), including 154 (99.35%) Gram-negative and 125 (100%) Gram-positive strains. VITEK MS (colony) identified 278 (99.29%) strains, including 153 (98.71%) Gram-negative and 125 (100%) Gram-positive. 261 (93.21%) strains were identified in VITEK MS (bacterial membrane), including 148 (95.48%) Gram-negative and 113 (90.40%) Gram-positive strains. VITEK MS (separating gel) identified 232 (82.86%) strains, including 136 (87.74%) Gram-negative and 96 (76.80%) Gram-positive strains. Conclusion: MALDI-TOF MS findings are highly consistent with traditional culture identification methods in terms of identification accuracy, and the VITEK MS (bacterial membrane) and VITEK MS (separating gel) identification methods significantly reduce the turnaround time for identification in the laboratory.


Asunto(s)
Patógenos Transmitidos por la Sangre , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
17.
J Asian Nat Prod Res ; 26(6): 681-689, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329449

RESUMEN

Sea cucumber-derived fungi have attracted much attention due to their capacity to produce an incredible variety of secondary metabolites. Genome-wide information on Aspergillus micronesiensis H39 obtained using third-generation sequencing technology (PacBio-SMRT) showed that the strain contains nonribosomal peptide synthetase (NRPS)-like gene clusters, which aroused our interest in mining its secondary metabolites. 11 known compounds (1-11), including two γ-aromatic butenolides (γ-AB) and five cytochalasans, were isolated from A. micronesiensis H39. The structures of the compounds were determined by NMR and ESIMS, and comparison with those reported in the literature. From the perspective of biogenetic origins, the γ-butyrolactone core of compounds 1 and 2 was assembled by NRPS-like enzyme. All of the obtained compounds showed no inhibitory activity against drug-resistant bacteria and fungi, as well as compounds 1 and 2 had no anti-angiogenic activity against zebrafish.


Asunto(s)
4-Butirolactona , 4-Butirolactona/análogos & derivados , Aspergillus , Familia de Multigenes , Péptido Sintasas , Péptido Sintasas/genética , Estructura Molecular , 4-Butirolactona/farmacología , 4-Butirolactona/química , Aspergillus/enzimología , Aspergillus/química , Aspergillus/genética , Animales , Pez Cebra
18.
Molecules ; 29(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542929

RESUMEN

The oral delivery strategy of natural anti-oxidant and anti-inflammatory agents has attracted great attention to improve the effectiveness of ulcerative colitis (UC) treatment. Herein, we developed a novel orally deliverable nanoparticle, carboxymethyl chitosan (CMC)-modified astaxanthin (AXT)-loaded nanoparticles (CMC-AXT-NPs), for UC treatment. The CMC-AXT-NPs were evaluated by appearance, morphology, particle size, ζ-potential, and encapsulation efficiency (EE). The results showed that CMC-AXT-NPs were nearly spherical in shape with a particle size of 34.5 nm and ζ-potential of -30.8 mV, and the EE of CMC-AXT-NPs was as high as 95.03%. The CMC-AXT-NPs exhibited preferable storage stability over time and well-controlled drug-release properties in simulated intestinal fluid. Additionally, in vitro studies revealed that CMC-AXT-NPs remarkably inhibited cytotoxicity induced by LPS and demonstrated superior antioxidant and anti-inflammatory abilities in Raw264.7 cells. Furthermore, CMC-AXT-NPs effectively alleviated clinical symptoms of colitis induced by dextran sulfate sodium salt (DSS), including maintaining body weight, inhibiting colon shortening, and reducing fecal bleeding. Importantly, CMC-AXT-NPs suppressed the expression of pro-inflammatory cytokines like TNF-α, IL-6, and IL-1ß and ameliorated DSS-induced oxidative damage. Our results demonstrated the potential of CMC-modified nanoparticles as an oral delivery system and suggested these novel AXT nanoparticles could be a promising strategy for UC treatment.


Asunto(s)
Quitosano , Colitis Ulcerosa , Colitis , Nanopartículas , Humanos , Colitis Ulcerosa/inducido químicamente , Quitosano/uso terapéutico , Antiinflamatorios/uso terapéutico , Sulfato de Dextran/efectos adversos , Colitis/tratamiento farmacológico , Xantófilas
19.
Pharm Biol ; 62(1): 456-471, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38773737

RESUMEN

CONTEXT: The mechanisms of Traditional Chinese Medicine (TCM) Guizhi-Gancao Decoction (GGD) remain unknown. OBJECTIVE: This study explores the mechanisms of GGD against cardiac hypertrophy. MATERIALS AND METHODS: Network pharmacology analysis was carried out to identify the potential targets of GGD. In vivo experiments, C57BL/6J mice were divided into Con, phenylephrine (PE, 10 mg/kg/d), 2-chloroadenosine (CADO, the stable analogue of adenosine, 2 mg/kg/d), GGD (5.4 g/kg/d) and GGD (5.4 g/kg/d) + CGS15943 (a nonselective adenosine receptor antagonist, 4 mg/kg/d). In vitro experiments, primary neonatal rat cardiomyocytes (NRCM) were divided into Con, PE (100 µM), CADO (5 µM), GGD (10-5 g/mL) and GGD (10-5 g/mL) + CGS15943 (5 µM). Ultrasound, H&E and Masson staining, hypertrophic genes expression and cell surface area were conducted to verify the GGD efficacy. Adenosine receptors (ADORs) expression were tested via real-time polymerase chain reaction (PCR), western blotting and immunofluorescence analysis. RESULTS: Network pharmacology identified ADORs among those of the core targets of GGD. In vitro experiments demonstrated that GGD attenuated PE-induced increased surface area (with an EC50 of 5.484 × 10-6 g/mL). In vivo data shown that GGD attenuated PE-induced ventricular wall thickening. In vitro and in vivo data indicated that GGD alleviated PE-induced hypertrophic gene expression (e.g., ANP, BNP and MYH7/MYH6), A1AR over-expression and A2aAR down-expression. Moreover, CADO exerts effects similar to GGD, whereas CGS15943 eliminated most effects of GGD. DISCUSSION AND CONCLUSIONS: Our findings suggest the mechanism by which GGD inhibits cardiac hypertrophy, highlighting regulation of ADORs as a potential therapeutic strategy for HF.


Asunto(s)
Cardiomegalia , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Miocitos Cardíacos , Farmacología en Red , Fenilefrina , Animales , Medicamentos Herbarios Chinos/farmacología , Fenilefrina/farmacología , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/inducido químicamente , Ratones , Masculino , Ratas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Ratas Sprague-Dawley , Células Cultivadas , Modelos Animales de Enfermedad , Medicina Tradicional China/métodos
20.
Angew Chem Int Ed Engl ; : e202409020, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899789

RESUMEN

The strategy of integrating conformational isomerization donors and chiral acceptor in single molecule was proposed to construct white circularly polarized luminescence (WCPL) materials in this work. Consequently, a pair of dual-emission enantiomers, namely (R/S)-DO-PTZ, were designed and synthesized, which displayed white emission with blue and yellow dual-emission bands in solution and solid films at Commission Internationale de l'Eclairage (CIE) coordinates of (0.30, 0.33) and (0.33, 0.35), respectively. Meanwhile, (R/S)-DO-PTZ exhibited high PLQY of up to 67% in doped films and obvious mirror-image WCPL signals with |glum| value of 3.0 × 10-3. Moreover, white circularly polarized electroluminescence (WCPEL) based on organic light-emitting diodes (OLEDs) with (R/S)-DO-PTZ as emitters were also achieved with CIE coordinates of (0.32, 0.37) and EQEmax of 4.7%, representing the state-of-the-art level of white OLEDs based on single-molecule purely organic emitters. By optimizing the device structure, warm WCPEL devices were further obtained with |gEL| value of 2.8 × 10-3, CIE coordinates of (0.37, 0.48) and EQEmax of up to 15.6%. To our knowledge, this is the first report of CP-WOLEDs based on single-molecule purely organic emitters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA