Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888457

RESUMEN

Large sample datasets have been regarded as the primary basis for innovative discoveries and the solution to missing heritability in genome-wide association studies. However, their computational complexity cannot consider all comprehensive effects and all polygenic backgrounds, which reduces the effectiveness of large datasets. To address these challenges, we included all effects and polygenic backgrounds in a mixed logistic model for binary traits and compressed four variance components into two. The compressed model combined three computational algorithms to develop an innovative method, called FastBiCmrMLM, for large data analysis. These algorithms were tailored to sample size, computational speed, and reduced memory requirements. To mine additional genes, linkage disequilibrium markers were replaced by bin-based haplotypes, which are analyzed by FastBiCmrMLM, named FastBiCmrMLM-Hap. Simulation studies highlighted the superiority of FastBiCmrMLM over GMMAT, SAIGE and fastGWA-GLMM in identifying dominant, small α (allele substitution effect), and rare variants. In the UK Biobank-scale dataset, we demonstrated that FastBiCmrMLM could detect variants as small as 0.03% and with α ≈ 0. In re-analyses of seven diseases in the WTCCC datasets, 29 candidate genes, with both functional and TWAS evidence, around 36 variants identified only by the new methods, strongly validated the new methods. These methods offer a new way to decipher the genetic architecture of binary traits and address the challenges outlined above.


Asunto(s)
Algoritmos , Estudio de Asociación del Genoma Completo , Estudio de Asociación del Genoma Completo/métodos , Humanos , Modelos Logísticos , Estudios de Casos y Controles , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Genómica/métodos , Simulación por Computador , Haplotipos , Modelos Genéticos
2.
Plant Cell ; 35(12): 4217-4237, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647529

RESUMEN

Membrane protein homeostasis is fine-tuned by the cellular pathways for vacuolar degradation and recycling, which ultimately facilitate plant growth and cell-environment interactions. The endosomal sorting complex required for transport (ESCRT) machinery plays important roles in regulating intraluminal vesicle (ILV) formation and membrane protein sorting to vacuoles. We previously showed that the plant-specific ESCRT component FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FREE1) performs multiple functions in plants, although the underlying mechanisms remain elusive. In this study, we performed a suppressor screen of the FREE1-RNAi mutant and identified and characterized 2 suppressor of free1 (sof) mutants in Arabidopsis (Arabidopsis thaliana). These mutants, sof10 and sof641, result in a premature stop codon or a missense mutation in AT5G10370, respectively. This gene was named DEAH and RING domain-containing protein as FREE1 suppressor 1 (DRIF1). DRIF1 has a homologous gene, DRIF2, in the Arabidopsis genome with 95% identity to DRIF1. The embryos of drif1 drif2 mutants arrested at the globular stage and formed enlarged multivesicular bodies (MVBs) with an increased number of ILVs. DRIF1 is a membrane-associated protein that coordinates with retromer component sorting nexin 1 to regulate PIN-FORMED2 recycling to the plasma membrane. Altogether, our data demonstrate that DRIF1 is a unique retromer interactor that orchestrates FREE1-mediated ILV formation of MVBs and vacuolar sorting of membrane proteins for degradation in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteostasis , Transporte de Proteínas/genética , Plantas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35005774

RESUMEN

Only mammals evolved a neocortex, which integrates sensory-motor and cognitive functions. Significant diversifications in the cellular composition and connectivity of the neocortex occurred between the two main therian groups: marsupials and eutherians. However, the developmental mechanisms underlying these diversifications are largely unknown. Here, we compared the neocortical transcriptomes of Sminthopsis crassicaudata, a mouse-sized marsupial, with those of eutherian mice at two developmentally equivalent time points corresponding to deeper and upper layer neuron generation. Enrichment analyses revealed more mature gene networks in marsupials at the early stage, which reverted at the later stage, suggesting a more precocious but protracted neuronal maturation program relative to birth timing of cortical layers. We ranked genes expressed in different species and identified important differences in gene expression rankings between species. For example, genes known to be enriched in upper-layer cortical projection neuron subtypes, such as Cux1, Lhx2 and Satb2, likely relate to corpus callosum emergence in eutherians. These results show molecular heterochronies of neocortical development in Theria, and highlight changes in gene expression and cell type composition that may underlie neocortical evolution and diversification. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Evolución Biológica , Euterios/crecimiento & desarrollo , Marsupiales/crecimiento & desarrollo , Neocórtex/crecimiento & desarrollo , Transcriptoma , Animales , Euterios/clasificación , Euterios/genética , Marsupiales/clasificación , Marsupiales/genética , Ratones , Neocórtex/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Cell ; 34(11): 4255-4273, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35775937

RESUMEN

Lipid droplets (LDs) stored during seed development are mobilized and provide essential energy and lipids to support seedling growth upon germination. Triacylglycerols (TAGs) are the main neutral lipids stored in LDs. The lipase SUGAR DEPENDENT 1 (SDP1), which hydrolyzes TAGs in Arabidopsis thaliana, is localized on peroxisomes and traffics to the LD surface through peroxisomal extension, but the underlying mechanism remains elusive. Here, we report a previously unknown function of a plant-unique endosomal sorting complex required for transport (ESCRT) component FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) in regulating peroxisome/SDP1-mediated LD turnover in Arabidopsis. We showed that LD degradation was impaired in germinating free1 mutant; moreover, the tubulation of SDP1- or PEROXIN 11e (PEX11e)-marked peroxisomes and the migration of SDP1-positive peroxisomes to the LD surface were altered in the free1 mutant. Electron tomography analysis showed that peroxisomes failed to form tubules to engulf LDs in free1, unlike in the wild-type. FREE1 interacted directly with both PEX11e and SDP1, suggesting that these interactions may regulate peroxisomal extension and trafficking of the lipase SDP1 to LDs. Taken together, our results demonstrate a pivotal role for FREE1 in LD degradation in germinating seedlings via regulating peroxisomal tubulation and SDP1 targeting.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Plantones/metabolismo , Peroxisomas/metabolismo , Proteínas de Arabidopsis/metabolismo , Gotas Lipídicas/metabolismo , Lipasa/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lípidos , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
J Neurosci Res ; 102(2): e25309, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38400573

RESUMEN

Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.


Asunto(s)
Sinapsis , Transmisión Sináptica , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Mitocondrias/metabolismo , Plasticidad Neuronal/fisiología , Autofagia
6.
J Virol ; 97(1): e0126122, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36519896

RESUMEN

Hepatitis B virus (HBV) contains a partially double-stranded relaxed circular DNA (rcDNA) genome that is converted into a covalently closed circular DNA (cccDNA) in the nucleus of the infected hepatocyte by cellular DNA repair machinery. cccDNA associates with nucleosomes to form a minichromosome that transcribes RNA to support the expression of viral proteins and reverse transcriptional replication of viral DNA. In addition to the de novo synthesis from incoming virion rcDNA, cccDNA can also be synthesized from rcDNA in the progeny nucleocapsids within the cytoplasm of infected hepatocytes via the intracellular amplification pathway. In our efforts to identify cellular DNA repair proteins required for cccDNA synthesis using a chemogenetic screen, we found that B02, a small-molecule inhibitor of DNA homologous recombination repair protein RAD51, significantly enhanced the synthesis of cccDNA via the intracellular amplification pathway in human hepatoma cells. Ironically, neither small interfering RNA (siRNA) knockdown of RAD51 expression nor treatment with another structurally distinct RAD51 inhibitor or activator altered cccDNA amplification. Instead, it was found that B02 treatment significantly elevated the levels of multiple heat shock protein mRNA, and siRNA knockdown of HSPA1 expression or treatment with HSPA1 inhibitors significantly attenuated B02 enhancement of cccDNA amplification. Moreover, B02-enhanced cccDNA amplification was efficiently inhibited by compounds that selectively inhibit DNA polymerase α or topoisomerase II, the enzymes required for cccDNA intracellular amplification. Our results thus indicate that B02 treatment induces a heat shock protein-mediated cellular response that positively regulates the conversion of rcDNA into cccDNA via the authentic intracellular amplification pathway. IMPORTANCE Elimination or functional inactivation of cccDNA minichromosomes in HBV-infected hepatocytes is essential for the cure of chronic hepatitis B virus (HBV) infection. However, lack of knowledge of the molecular mechanisms of cccDNA metabolism and regulation hampers the development of antiviral drugs to achieve this therapeutic goal. Our findings reported here imply that enhanced cccDNA amplification may occur under selected pathobiological conditions, such as cellular stress, to subvert the dilution or elimination of cccDNA and maintain the persistence of HBV infection. Therapeutic inhibition of HSPA1-enhanced cccDNA amplification under these pathobiological conditions should facilitate the elimination of cccDNA and cure of chronic hepatitis B.


Asunto(s)
ADN Circular , Proteínas HSP70 de Choque Térmico , Virus de la Hepatitis B , Humanos , ADN Circular/genética , ADN Viral/genética , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica , ARN Interferente Pequeño/metabolismo , Replicación Viral/genética , Proteínas HSP70 de Choque Térmico/metabolismo
7.
New Phytol ; 242(6): 2817-2831, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587065

RESUMEN

RNA editing is a crucial modification in plants' organellar transcripts that converts cytidine to uridine (C-to-U; and sometimes uridine to cytidine) in RNA molecules. This post-transcriptional process is controlled by the PLS-class protein with a DYW domain, which belongs to the pentatricopeptide repeat (PPR) protein family. RNA editing is widespread in land plants; however, complex thalloid liverworts (Marchantiopsida) are the only group reported to lack both RNA editing and DYW-PPR protein. The liverwort Cyathodium cavernarum (Marchantiopsida, Cyathodiaceae), typically found in cave habitats, was newly found to have 129 C-to-U RNA editing sites in its chloroplast and 172 sites in its mitochondria. The Cyathodium genus, specifically C. cavernarum, has a large number of PPR editing factor genes, including 251 DYW-type PPR proteins. These DYW-type PPR proteins may be responsible for C-to-U RNA editing in C. cavernarum. Cyathodium cavernarum possesses both PPR DYW proteins and RNA editing. Our analysis suggests that the remarkable RNA editing capability of C. cavernarum may have been acquired alongside the emergence of DYW-type PPR editing factors. These findings provide insight into the evolutionary pattern of RNA editing in land plants.


Asunto(s)
Hepatophyta , Filogenia , Edición de ARN , Edición de ARN/genética , Hepatophyta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Genes de Plantas , Secuencia de Aminoácidos
8.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 161-168, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38430026

RESUMEN

CircRNAs can regulate ferroptosis and affect cancer development and are promising biomarkers and therapeutic targets in lung cancer. circSCUBE3 is expressed in lung adenocarcinoma (LUAD) tissues. In this study, our purpose was to study the role and regulatory mechanism of circSCUBE3 in LUAD ferroptosis. circSCUBE3 was identified to be significantly downregulated in LUAD samples and cell lines. The expression of biomarkers related to lipid oxidation (4-HNE) and ferroptosis (Ptgs2) was both downregulated in LUAD tissues, suggesting the ferroptosis resistance in LUAD. Erastin, a ferroptosis inducer, was used to stimulate the LUAD cells for 48 h. The cell viability, 4-HNE and Ptgs2 level of LUAD cells were decreased by exposure to erastin while the expression of circSCUBE3 was not significantly altered. We then overexpressed circSCUBE3 in LUAD cells and found it decreased the GSH level and GSH/GSSG ratio in LUAD cells. CircSCUBE3 might serve as an independent factor of ferroptosis and may induce ferroptosis in LUAD by inhibiting GSH synthesis. The loss-of-function experiments were conducted, and circSCUBE3 deficiency reversed the erastin-induced reduction in cell viability, GSH level, GSH/GSSG ratio, mitochondrial membrane potential and elevation in MDA content, Ptgs2, 4-HNE expression as well as lipid ROS production. CircSCUBE3 negatively regulated GPX4 expression in LUAD cells, and the silencing of GPX4 counteracted the impact of circSCUBE3 deficiency on LUAD cell viability as well as ferroptosis, suggesting that circSCUBE3 regulated the GPX4-mediated GSH synthesis in LUAD. CircSCUBE3 was to bind to CREB, which activated the transcription of GPX4. CircSCUBE3 negatively regulated GPX4 expression by competitively interacting with CREB. In the tumor-bearing mouse models, circSCUBE3 silencing promoted tumor growth and reversed the erastin treatment-induced inhibition on tumorigenesis in vivo. In conclusion, circSCUBE3 inhibited LUAD development by promoting ferroptosis via the CREB/GPX4/GSH axis, which might provide a novel option for the LUAD targeted therapy.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Ferroptosis , Neoplasias Pulmonares , Animales , Ratones , Ciclooxigenasa 2/genética , Ferroptosis/genética , Disulfuro de Glutatión , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Biomarcadores , Lípidos
9.
Exp Cell Res ; 423(2): 113437, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435221

RESUMEN

BACKGROUND: Erlotinib treatment can lead to skin diseases that drastically affected the quality of life of patients. Quercetin (Que), the active component in Xijiao Dihuang Decoction (XDD), was identified to improve inflammatory skin diseases. However, the mechanism of XDD treating erlotinib-induced cutaneous toxicity was not clear at the molecular level. METHODS: Keratinocytes were treated with erlotinib, and the expression of inflammatory cytokines and chemokines was revealed by ELISA and qRT-PCR. The macrophage polarization was determined by flow cytometry. The key component of XDD, Que, and the target genes of dermatitis were selected via network pharmacology analysis. The binding effects of Que and target genes were verified using molecular docking and cellular thermal shift assay (CETSA)-western blot assay. Animal experiments were performed in vivo to verify the therapeutic effect of XDD on erlotinib-induced skin toxicity. RESULTS: Erlotinib induced M1 polarization of macrophages after stimulating epidermal keratinocytes. While this effect was associated with increased production of inflammatory cytokines and chemokines, such production was prominently decreased by XDD treatment. By combining network pharmacological analysis, molecular docking, and CETSA, it was confirmed that Que had a binding relationship with IL-2 and CXCL8. In vivo results implied that erlotinib abated tumor growth and stimulated dermatitis in HR-1 nude mice, while Que alleviated erlotinib-induced skin damage without affecting this tumor repression effect. CONCLUSION: The results indicated that XDD could relieve the dermatitis induced by erlotinib and provide a favorable theoretical basis for the clinical relief by using this method.


Asunto(s)
Dermatitis , Neoplasias , Enfermedades de la Piel , Ratones , Animales , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Ratones Desnudos , Simulación del Acoplamiento Molecular , Calidad de Vida , Citocinas/metabolismo , Quimiocinas , Dermatitis/tratamiento farmacológico , Enfermedades de la Piel/tratamiento farmacológico , Neoplasias/tratamiento farmacológico
10.
Int J Phytoremediation ; 26(9): 1453-1464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505937

RESUMEN

The improvement of biosorption efficiency for selective dye removal in a multi-dye aqueous system has become an increasingly significant research topic. However, the competitive effects of coexisting dyes and the target dye in such systems remain uncertain due to complex interactions between adsorbent and coexisting dyes. Therefore, in this research, response surface methodology (RSM) model was effectively employed to investigate the competitive effects of allura red (AR) and malachite green (MG) on methylene blue (MB) removal in a ternary dye aqueous system using three different parts of rape straw powders. In the current design of RSM, the initial concentrations of AR and MG dyes ranging from 0 mg·L-1 to 500 mg·L-1 were considered as influencing factors, while the removal rates of MB on adsorbents at an initial concentration of 500 mg·L-1 were established as response values. The RSM models exhibited high correlation coefficients with adjusted R2 values of 0.9908 (pith core), 0.9870 (seedpods), and 0.9902 (shells), respectively, indicating a close fitted between predicted and actual values. The proposed models indicated that the perturbation effects of initial AR and MG concentrations were observed on the removal rates of MB by three types of rape straw powders in a ternary dye aqueous system, resulting in a decrease in MB removal rates, particularly at higher initial AR concentration due to stronger competitive effects compared to initial MG concentration. The structures of rape straw powders, including pith core, seedpods and shell, were analyzed using scanning eletron microscoe (SEM), energy dispersive spectroscopy (EDS), N2 physisorption isotherm, frourier transform infared spectroscopy (FTIR), Zeta potential classes and fluorescence spectrum before and after adsorption of MB in various dye aqueous systems. The characteristics of rape straw powders suggested that similar adsorption mechanisms, such as electrostatic attraction, pore diffusion, and group complex formation for MB, AR, and MG, respectively, occurred on the surfaces of adsorbents during their respective adsorption processes. This leads to significant competitive effects on the removal rates of MB in a ternary dye aqueous system, which are particularly influenced by initial AR concentrations as confirmed through fluorescence spectrum analysis.


Impact of AR and MG on MB removal was analyzed using simple methodologies.Competitive behaviors between AR, MG and MB were understood through RSM.Intense restrain effects on MB removal were revealed by AR concentration.


Asunto(s)
Biodegradación Ambiental , Colorantes , Azul de Metileno , Polvos , Contaminantes Químicos del Agua , Adsorción , Colorantes/química , Colorantes de Rosanilina/química , Brassica rapa , Compuestos Azo , Eliminación de Residuos Líquidos/métodos
11.
J Virol ; 96(24): e0115022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448800

RESUMEN

Hepatitis B virus (HBV) replicates its genomic DNA by reverse transcription of an RNA intermediate, termed pregenomic RNA (pgRNA), within nucleocapsid. It had been shown that transfection of in vitro-transcribed pgRNA initiated viral replication in human hepatoma cells. We demonstrated here that viral capsids, single-stranded DNA, relaxed circular DNA (rcDNA) and covalently closed circular DNA (cccDNA) became detectable sequentially at 3, 6, 12, and 24 h post-pgRNA transfection into Huh7.5 cells. The levels of viral DNA replication intermediates and cccDNA peaked at 24 and 48 h post-pgRNA transfection, respectively. HBV surface antigen (HBsAg) became detectable in culture medium at day 4 posttransfection. Interestingly, the early robust viral DNA replication and cccDNA synthesis did not depend on the expression of HBV X protein (HBx), whereas HBsAg production was strictly dependent on viral DNA replication and expression of HBx, consistent with the essential role of HBx in the transcriptional activation of cccDNA minichromosomes. While the robust and synchronized HBV replication within 48 h post-pgRNA transfection is particularly suitable for the precise mapping of the HBV replication steps, from capsid assembly to cccDNA formation, targeted by distinct antiviral agents, the treatment of cells starting at 48 h post-pgRNA transfection allows the assessment of antiviral agents on mature nucleocapsid uncoating, cccDNA synthesis, and transcription, as well as viral RNA stability. Moreover, the pgRNA launch system could be used to readily assess the impacts of drug-resistant variants on cccDNA formation and other replication steps in the viral life cycle. IMPORTANCE Hepadnaviral pgRNA not only serves as a template for reverse transcriptional replication of viral DNA but also expresses core protein and DNA polymerase to support viral genome replication and cccDNA synthesis. Not surprisingly, cytoplasmic expression of duck hepatitis B virus pgRNA initiated viral replication leading to infectious virion secretion. However, HBV replication and antiviral mechanism were studied primarily in human hepatoma cells transiently or stably transfected with plasmid-based HBV replicons. The presence of large amounts of transfected HBV DNA or transgenes in cellular chromosomes hampered the robust analyses of HBV replication and cccDNA function. As demonstrated here, the pgRNA launch HBV replication system permits the accurate mapping of antiviral target and investigation of cccDNA biosynthesis and transcription using secreted HBsAg as a convenient quantitative marker. The effect of drug-resistant variants on viral capsid assembly, genome replication, and cccDNA biosynthesis and function can also be assessed using this system.


Asunto(s)
Virus de la Hepatitis B , Virología , Humanos , Antivirales/farmacología , Replicación del ADN , ADN Circular/genética , ADN Circular/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Hepatitis B/virología , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral , Virología/métodos , Línea Celular Tumoral
12.
New Phytol ; 240(1): 41-60, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37507353

RESUMEN

The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.


Asunto(s)
Endosomas , Plantas , Plantas/metabolismo , Endosomas/metabolismo , Vacuolas/metabolismo , Cuerpos Multivesiculares/metabolismo , Transporte de Proteínas , Aparato de Golgi/metabolismo , Red trans-Golgi/metabolismo
13.
Environ Sci Technol ; 57(32): 11852-11862, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37526712

RESUMEN

Energy transition is an important way to control air pollution, but it may conflict with the economic goal of alleviating regional inequality due to its inherently different cost burdens. As one of the effective measures of energy transition, this paper takes small coal-fired boiler (SCB) upgrading as an example to explore the regional mismatch between upgrading costs and health benefits. Here, we construct a boiler-level inventory of SCB upgrades for the North China Plain (NCP) during 2013-2017 and propose an integrated modeling framework to quantify the spatial contribution of economic costs and health benefits associated with SCB upgrading. We find that although the total health benefits could offset the total costs for the entire region, the developed municipalities (Beijing and Tianjin) are likely to gain more health benefits from less-developed neighboring provinces at lower costs. These developed municipalities contribute only 14% to the total health benefits but gain 21% of the benefits within their territories, 56% of which come from neighboring provinces. Their benefits are approximately 5.6 times their costs, which is much higher than the 1.5 benefit-cost ratio in neighboring provinces. Our findings may be useful in shaping more equitable and sound environmental policies in China or other regions of the world with serious coal-related air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminación del Aire/análisis , Beijing , China , Fenómenos Físicos , Carbón Mineral , Contaminantes Atmosféricos/análisis
14.
Ann Clin Microbiol Antimicrob ; 22(1): 46, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308958

RESUMEN

BACKGROUND: Antibiotics exert an outstanding selective pressure on bacteria, forcing their chromosomal gene mutations and drug resistance genes to spread. The objective of this study is to evaluate the expression of the New Delhi Metallo-ß-Lactamase-1 gene (blaNDM-1) in the clinical isolate (Klebsiella pneumoniae TH-P12158), transformant strains Escherichia coli BL21 (DE3)-blaNDM-1, and Escherichia coli DH5α- blaNDM-1 when exposed to imipenem. METHODS: ß-Lactamase genes (blaSHV, blaTEM-1, blaCTX-M-9, blaIMP, blaNDM-1, blaKPC, blaOXA, blaGES, and blaDHA) from randomly selected carbapenems-sensitive K.pneumoniae (n = 20) and E.coli (n = 20) strains were amplified by PCR. The recombinant plasmid of pET-28a harboring blaNDM-1 was transformed into E.coli BL21 (DE3) and E.coli DH5α by electroporation. The resistance phenotype and higher blaNDM-1 expression in K.pneumoniae TH-P12158, transformant E.coli BL21 (DE3)-blaNDM-1, and E.coli DH5α-blaNDM-1 were observed when exposed to imipenem with grade increasing, decreasing, and canceling doses, respectively. RESULTS: After being exposed to different doses of imipenem, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of antimicrobial drugs and blaNDM-1 expression of strains increased, which was positively correlated with doses of imipenem. On the contrary, with the decrease or cancellation of imipenem doses, the blaNDM-1 expression was deteriorated, while the MIC and MBC values remained relatively stable. These results demonstrated that low doses of imipenem (˂MIC) could press blaNDM-1 positive strains producing stable drug resistance memory and altered blaNDM-1 expression. CONCLUSIONS: Low doses of imipenem could press blaNDM-1 positive strains producing sustained resistance memory and altered blaNDM-1 expression. In particular, the positive correlation between the resistance genes expression and antibiotics exposure shows promising guiding significance for clinical medication.


Asunto(s)
Imipenem , Klebsiella pneumoniae , Antibacterianos , Carbapenémicos , Escherichia coli
15.
J Dairy Sci ; 106(4): 2247-2260, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36870847

RESUMEN

Guishan goats, a unique goat breed in Yunnan Province, have a long history and representation, but their whey protein and function remain unclear. In this study, we carried out a quantitative analysis of the Guishan and Saanen goat whey proteome using a label-free proteomic approach. A total of 500 proteins were quantified from the 2 kinds of goat whey proteins, including 463 common proteins, 37 uniquely expressed whey proteins (UEWP), and 12 differentially expressed whey proteins (DEWP). Bioinformatics analysis indicated that UEWP and DEWP were mainly involved in cellular and immune system processes, membrane, and binding. In addition, UEWP and DEWP in Guishan goats participated primarily in metabolism and immune-related pathways, whereas Saanen goat whey proteins were associated mostly with environmental information processing-related pathways. Guishan goat whey promoted the growth of RAW264.7 macrophages more than Saanen goat whey, and significantly reduced the production of nitric oxide in lipopolysaccharide-stimulated RAW264.7 cells. This study provides a reference for further understanding these 2 goat whey proteins and finding functional active substances from them.


Asunto(s)
Leche , Proteómica , Animales , Leche/química , Proteína de Suero de Leche/química , China , Proteoma/metabolismo , Cabras/metabolismo , Redes y Vías Metabólicas , Proteínas de la Leche/análisis
16.
J Biol Chem ; 297(2): 100960, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34265302

RESUMEN

Mammalian mitochondrial tRNA (mt-tRNA) plays a central role in the synthesis of the 13 subunits of the oxidative phosphorylation complex system (OXPHOS). However, many aspects of the context-dependent expression of mt-tRNAs in mammals remain unknown. To investigate the tissue-specific effects of mt-tRNAs, we performed a comprehensive analysis of mitochondrial tRNA expression across five mice tissues (brain, heart, liver, skeletal muscle, and kidney) using Northern blot analysis. Striking differences in the tissue-specific expression of 22 mt-tRNAs were observed, in some cases differing by as much as tenfold from lowest to highest expression levels among these five tissues. Overall, the heart exhibited the highest levels of mt-tRNAs, while the liver displayed markedly lower levels. Variations in the levels of mt-tRNAs showed significant correlations with total mitochondrial DNA (mtDNA) contents in these tissues. However, there were no significant differences observed in the 2-thiouridylation levels of tRNALys, tRNAGlu, and tRNAGln among these tissues. A wide range of aminoacylation levels for 15 mt-tRNAs occurred among these five tissues, with skeletal muscle and kidneys most notably displaying the highest and lowest tRNA aminoacylation levels, respectively. Among these tissues, there was a negative correlation between variations in mt-tRNA aminoacylation levels and corresponding variations in mitochondrial tRNA synthetases (mt-aaRS) expression levels. Furthermore, the variable levels of OXPHOS subunits, as encoded by mtDNA or nuclear genes, may reflect differences in relative functional emphasis for mitochondria in each tissue. Our findings provide new insight into the mechanism of mt-tRNA tissue-specific effects on oxidative phosphorylation.


Asunto(s)
Mitocondrias , ARN de Transferencia , Animales , Núcleo Celular/metabolismo , Ratones , Especificidad de Órganos , Fosforilación Oxidativa , Procesamiento Postranscripcional del ARN
17.
Plant Cell ; 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31123049

RESUMEN

ENDOMEMBRANE PROTEIN 70 (EMP70) proteins constitute a 12-member superfamily in Arabidopsis thaliana, and are the most abundant protein species in plant Golgi proteomes. However, the physiological functions of EMPs in plants remain largely unknown. Here we have demonstrated that two AtEMP12 T-DNA insertion mutants are sensitive to ER (endoplasmic reticulum) stress as induced by tunicamycin and dithiothreitol treatments. Interestingly, the unfolded protein response (UPR) is constitutively activated in the knockout mutant emp12-1 under normal growth conditions, suggesting that the activation is a result of insufficient chaperones in the ER to aid protein folding. Indeed, we have further shown that BiP is secreted into the apoplast in emp12-1, while the K/HDEL receptor ERD2a, which regulates BiP trafficking, is exclusively localized in the ER in emp12-1, instead of its known ER-Golgi dual-localization. Given an enhanced retrograde transport of ERD2a, along with less dimerized receptor formed in the absence of EMP12, ERD2a may be prematurely returned to the ER without its bound ligands. Therefore, we propose that EMP12 may act as a novel regulator of the K/HDEL receptor to ensure an effective retrograde transport of K/HDEL ligands.

18.
Plant Cell ; 31(9): 2152-2168, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221737

RESUMEN

FYVE domain protein required for endosomal sorting1 (FREE1), a plant-specific endosomal sorting complex required for transport-I component, is essential for the biogenesis of multivesicular bodies (MVBs), vacuolar degradation of membrane protein, cargo vacuolar sorting, autophagic degradation, and vacuole biogenesis in Arabidopsis (Arabidopsis thaliana). Here, we report the characterization of RESURRECTION1 (RST1) as a suppressor of free1 that, when mutated as a null mutant, restores the normal MVB and vacuole formation of a FREE1-RNAi knockdown line and consequently allows survival. RST1 encodes an evolutionarily conserved multicellular organism-specific protein, which contains two Domain of Unknown Function 3730 domains, showing no similarity to known proteins, and predominantly localizes in the cytosol. The depletion of FREE1 causes substantial accumulation of RST1, and transgenic Arabidopsis plants overexpressing RST1 display retarded seedling growth with dilated MVBs, and inhibition of endocytosed FM4-64 dye to the tonoplast, suggesting that RST1 has a negative role in vacuolar transport. Consistently, enhanced endocytic degradation of membrane vacuolar cargoes occurs in the rst1 mutant. Further transcriptomic comparison of rst1 with free1 revealed a negative association between gene expression profiles, demonstrating that FREE1 and RST1 have antagonistic functions. Thus, RST1 is a negative regulator controlling membrane protein homeostasis and FREE1-mediated functions in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Cuerpos Multivesiculares/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transporte de Proteínas/genética , Interferencia de ARN , Plantones/crecimiento & desarrollo , Transcriptoma , Proteínas de Transporte Vesicular/genética
19.
Arch Microbiol ; 204(12): 689, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36326918

RESUMEN

This study aimed to evaluate the antibacterial properties of nine lactic acid bacterial strains. The agar diffusion method (Oxford cup method) was used to assess the antimicrobial activity against pathogenic bacteria in aquaculture. The results showed that all selected strains inhibited the growth of Photobacterium damsel, Vibrio alginolyticus, Listonella anguillarum, Edwardsiella ictaluri, Aeromonas hydrophila, V. arahaemolyticus, Edwardsiella tarda and V. harveyi, but did not inhibit the growth of Metschnikowia bicuspidata. Among these strains of lactic acid bacteria, r1 was selected for its obvious antibacterial activity against eight kinds of pathogenic bacteria by 96-well plate method. Its inhibitory rate reached 96%, and it could inhibit the growth of six pathogenic bacteria at 121 â„ƒ, 20 min and pH 3.5-4.0. It was identified as Lactiplantibacillus plantarum by morphological observation and 16S rRNA sequencing analysis. Because strain r1 was isolated from culture ponds and exerted strong inhibitory effects on pathogenic bacteria, it holds potential as an agent to prevent and control infectious diseases in aquaculture. This study provides a foundation for the development and utilization of probiotics in aquaculture.


Asunto(s)
Antiinfecciosos , Enfermedades de los Peces , Lactobacillales , Probióticos , Vibrio , Animales , Lactobacillales/genética , ARN Ribosómico 16S/genética , Acuicultura/métodos , Vibrio/genética , Antiinfecciosos/farmacología , Probióticos/farmacología , Antibacterianos/farmacología , Enfermedades de los Peces/microbiología
20.
Br J Clin Pharmacol ; 88(8): 3760-3770, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35304924

RESUMEN

AIMS: The aim of this study was to investigate the effectiveness, safety and pharmacokinetics of adamgammadex in surgical patients. METHODS: Forty-eight patients aged 18-64 years old were randomized to receive adamgammadex (2, 4, 6, and 8 mg.kg-1 ) or placebo at a ratio of 10:2 for reversal of 0.6 mg.kg-1 rocuronium-induced neuromuscular block. Neuromuscular function was monitored by TOF-Watch® SX. When the T2 of train-of-four (TOF) reappeared at the end of surgery, patients received an intravenous administration of adamgammadex or placebo. RESULTS: The recovery time of the TOF ratio to 0.9 decreased significantly from 39.3 [29.5, 50.2] minutes in the group that received placebo to 3.0 [2.3, 3.9] minutes, P < .0001; 2.1 [1.5, 3.0] minutes, P < .0001; 2.1 [1.8, 3.3] minutes, P < .0001; and 1.8 [1.5, 2.2] minutes, P < .0001 in the 2, 4, 6 and 8 mg.kg-1 adamgammadex groups, respectively. Then, adamgammadex also showed a shortened recovery time for the TOF ratio recovered to 0.8 and 0.7. Adamgammadex was well tolerated, and no cases of anaphylactic reactions, post-operative bleeding, recurarization, abnormal basic vital signs and prolonged QT intervals were observed. The pharmacokinetics of adamgammadex in plasma increased in dose-dependent manner. The 24-hour cumulative fraction of adamgammadex in urine was 65-83%, and that of rocuronium was increased after using adamgammadex from 15% to about 25-30%. CONCLUSION: Adamgammadex was found to be effective for reversal of rocuronium-induced neuromuscular block, and it was safe and well tolerated in patients.


Asunto(s)
Bloqueo Neuromuscular , Fármacos Neuromusculares no Despolarizantes , gamma-Ciclodextrinas , Adolescente , Adulto , Androstanoles/efectos adversos , Humanos , Persona de Mediana Edad , Bloqueo Neuromuscular/efectos adversos , Fármacos Neuromusculares no Despolarizantes/efectos adversos , Rocuronio , Sugammadex/farmacología , Adulto Joven , gamma-Ciclodextrinas/farmacología , gamma-Ciclodextrinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA