Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Leukoc Biol ; 116(1): 186-196, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38648512

RESUMEN

Transarterial embolization, the first-line treatment for hepatocellular carcinoma, does not always lead to promising outcomes in all patients. A better understanding of how the immune lymphocyte changes after transarterial embolization might be the key to improve the efficacy of transarterial embolization. However, there are few studies evaluating immune lymphocytes in transarterial embolization patients. Therefore, we aimed to evaluate the short- and long-term effects of transarterial embolization on lymphocyte subsets in patients with hepatocellular carcinoma to identify those that predict transarterial embolization prognosis. Peripheral blood samples were collected from 44 patients with hepatocellular carcinoma at the following time points: 1 d before the initial transarterial embolization, 3 d after the initial transarterial embolization, and 1 mo after the initial transarterial embolization and subjected to peripheral blood mononuclear cell isolation and flow cytometry. Dynamic changes in 75 lymphocyte subsets were recorded, and their absolute counts were calculated. Tumor assessments were made every 4 to 6 wk via computed tomography or magnetic resonance imaging. Our results revealed that almost all lymphocyte subsets fluctuated 3 d after transarterial embolization, but only Tfh and B cells decreased 1 mo after transarterial embolization. Univariate and multivariate Cox regression showed that high levels of Th2 and conventional killer Vδ2 cells were associated with longer progressive-free survival after transarterial embolization. Longer overall survival after transarterial embolization was associated with high levels of Th17 and viral infection-specific Vδ1 cells and low levels of immature natural killer cells. In conclusion, transarterial embolization has a dynamic influence on the status of lymphocytes. Accordingly, several lymphocyte subsets can be used as prognostic markers for transarterial embolization.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Masculino , Femenino , Persona de Mediana Edad , Embolización Terapéutica/métodos , Pronóstico , Anciano , Linfocitos/inmunología , Linfocitos/patología , Subgrupos Linfocitarios/inmunología , Recuento de Linfocitos
2.
Huan Jing Ke Xue ; 41(9): 3976-3984, 2020 Sep 08.
Artículo en Zh | MEDLINE | ID: mdl-33124277

RESUMEN

The ammonia emissions inventory of Zhejiang Province was established in 2017 using the activity data of various ammonia emission sources, emission factors, and an estimation method. Ammonia emissions for each source and city in Zhejiang Province were analyzed. The spatial distribution and intensity of ammonia emissions in 2017 were mapped using ArcGIS software. The total anthropogenic ammonia emissions in Zhejiang Province in 2017 were 122.00 kt. The farmland ecosystem was the major source of total ammonia emissions (36.06 kt), and nitrogen fertilizer applications was the largest contributor in this category (87.12%), followed by the livestock and poultry source (29.44%). The waste and human-activity sources were the two major non-agricultural sources, accounting for 44.07% and 28.49%, respectively. Hangzhou City had the highest ammonia emissions in 2017, accounting for 17.83% of the total ammonia emissions in Zhejiang Province. However, the ammonia emission intensity in Jiaxing City was the highest, reaching 3.82 t ·km-2. The spatial distribution map revealed that ammonia emissions in the northern and southeastern Zhejiang were relatively higher, while ammonia emission intensity was higher in the northern and northeastern region.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Animales , Ciudades , Ecosistema , Monitoreo del Ambiente , Humanos
3.
Huan Jing Ke Xue ; 40(11): 4862-4869, 2019 Nov 08.
Artículo en Zh | MEDLINE | ID: mdl-31854552

RESUMEN

According to activity level data of various ammonia emission sources in Jiangsu Province, using a reasonable inventory calculation method and emission factor, an ammonia emission inventory in Jiangsu Province from 2013 to 2017 was established, and the trend of anthropogenic ammonia emissions over these years was analyzed. The distribution characteristics of anthropogenic ammonia emissions and emission intensity in Jiangsu Province were analyzed using ArcGIS software. The results showed that the ammonia emissions in Jiangsu Province decreased from 624.84 kt in 2013 to 562.47 kt in 2017 with an average annual rate of decline of approximately 2.6%. Agricultural has always been the most important source of ammonia emissions in Jiangsu Province and accounted for 82.4% of the total ammonia emissions in 2017. Laying hens are the largest source of ammonia emissions from livestock and poultry sources, accounting for 49.3% of the ammonia emissions from livestock and poultry. The average ammonia emission intensity in Jiangsu Province was 5.3 t·km-2 in 2017. Yancheng and Xuzhou are two cities with the largest anthropogenic ammonia emissions and emission intensity in Jiangsu Province. Zhenjiang City has the lowest ammonia emission and emission intensity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA