Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(1): 319-325, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147350

RESUMEN

Silicon T centers present the promising possibility of generating optically active spin qubits in an all-silicon device. However, these color centers exhibit long excited state lifetimes and a low Debye-Waller factor, making them dim emitters with low efficiency into the zero-phonon line. Nanophotonic cavities can solve this problem by enhancing radiative emission into the zero-phonon line through the Purcell effect. In this work, we demonstrate cavity-enhanced emission from a single T center in a nanophotonic cavity. We achieve a 2 order of magnitude increase in the brightness of the zero-phonon line relative to waveguide-coupled emitters, a 23% collection efficiency from emitter to fiber, and an overall emission efficiency into the zero-phonon line of 63.4%. We also observe a lifetime enhancement of 5, corresponding to a Purcell factor exceeding 18 when correcting for the emission to the phonon sideband. These results pave the way toward efficient spin-photon interfaces in silicon photonics.

2.
Plant Physiol ; 192(1): 616-632, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732924

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signaling molecule reported to play multiple roles in fruit ripening. However, the molecular mechanisms underlying H2S-mediated delay in fruit ripening remain to be established. Here, the gene encoding a WRKY transcription factor, WRKY71, was identified as substantially upregulated in H2S-treated tomato (Solanum lycopersicum) via transcriptome profiling. The expression of WRKY71 was negatively associated with that of CYANOALANINE SYNTHASE1 (CAS1). Transient and stable genetic modification experiments disclosed that WRKY71 acts as a repressor of the tomato ripening process. CAS1 appears to play an opposite role, based on the finding that the ripening process was delayed in the cas1 mutant and accelerated in CAS1-OE tomatoes. Dual-luciferase reporter assay, yeast one-hybrid, electrophoretic mobility shift assay, and transient transformation experiments showed that WRKY71 bound to the CAS1 promoter and suppressed its activation. Moreover, the persulfidation of WRKY71 enhanced its binding ability to the CAS1 promoter. Data from luciferase complementation and Y2H assays confirmed that WRKY71 interacts with a BOI-related E3 ubiquitin-protein ligase 3 (BRG3) and is ubiquitinated in vitro. Further experiments showed that modification of BRG3 via persulfidation at Cys206 and Cys212 led to reduced ubiquitination activity. Our findings support a model whereby BRG3 undergoes persulfidation at Cys206 and Cys212, leading to reduced ubiquitination activity and decreased interactions with the WRKY71 transcript, with a subsequent increase in binding activity of the persulfidated WRKY71 to the CAS1 promoter, resulting in its transcriptional inhibition and thereby delayed ripening of tomatoes. Our collective findings provide insights into a mechanism of H2S-mediated regulation of tomato fruit ripening.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frutas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo
3.
Opt Express ; 32(5): 7774-7782, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439450

RESUMEN

Using cascaded Mach-Zehnder interferometers (CMZIs) provides an attractive option for realizing coarse wavelength-division (de)multiplexing (CWDM) filters with low losses, low crosstalk, flat tops, and high scalability. However, they usually have large footprints and insufficient fabrication tolerances, due to the inferior performance of conventional directional couplers (DCs) used for MZIs. Here, a four-channel CMZI wavelength-division (de)multiplexer based on novel Bezier-shape DCs with compact footprints, broad bandwidths and decent fabrication tolerances. For the fabricated (de)multiplexer with 20-nm channel spacing, the excess loss is less than 0.5 dB and the crosstalk is lower than -19.5 dB in the 1-dB bandwidth of 12.8 nm. For the case with a core-width deviation of ±20 nm, the device still performs very well with low losses and low crosstalk. Compared to the state-of-the-art MZI-based CWDM filters, the present device has slightly high performances and a footprint of 0.012 mm2 shrunk greatly by ∼3-folds. This work can be extended for more channels and other material platforms.

4.
Am J Physiol Endocrinol Metab ; 324(4): E347-E357, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791324

RESUMEN

Thrombospondin-1 (TSP1) is a secreted protein minimally expressed in health but increased in disease and age. TSP1 binds to the cell membrane receptor CD47, which itself engages signal regulatory protein α (SIRPα), and the latter creates a checkpoint for immune activation. Individuals with cancer administered checkpoint-blocking molecules developed insulin-dependent diabetes. Relevant to this, CD47 blocking antibodies and SIRPα fusion proteins are in clinical trials. We characterized the molecular signature of TSP1, CD47, and SIRPα in human islets and pancreata. Fresh islets and pancreatic tissue from nondiabetic individuals were obtained. The expression of THBS1, CD47, and SIRPA was determined using single-cell mRNA sequencing, immunofluorescence microscopy, Western blot, and flow cytometry. Islets were exposed to diabetes-affiliated inflammatory cytokines and changes in protein expression were determined. CD47 mRNA was expressed in all islet cell types. THBS1 mRNA was restricted primarily to endothelial and mesenchymal cells, whereas SIRPA mRNA was found mostly in macrophages. Immunofluorescence staining showed CD47 protein expressed by ß cells and present in the exocrine pancreas. TSP1 and SIRPα proteins were not seen in islets or the exocrine pancreas. Western blot and flow cytometry confirmed immunofluorescent expression patterns. Importantly, human islets produced substantial quantities of secreted TSP1. Human pancreatic exocrine and endocrine tissue expressed CD47, whereas fresh islets displayed cell surface CD47 and secreted TSP1 at baseline and in inflammation. These findings suggest unexpected effects on islets from agents that intersect TSP1-CD47-SIRPα.NEW & NOTEWORTHY CD47 is a cell surface receptor with two primary ligands, soluble thrombospondin-1 (TSP1) and cell surface signal regulatory protein alpha (SIRPα). Both interactions provide checkpoints for immune cell activity. We determined that fresh human islets display CD47 and secrete TSP1. However, human islet endocrine cells lack SIRPα. These gene signatures are likely important given the increasing use of CD47 and SIRPα blocking molecules in individuals with cancer.


Asunto(s)
Antígeno CD47 , Neoplasias , Humanos , Antígeno CD47/genética , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo , Trombospondinas/metabolismo , Trombospondinas/uso terapéutico , Trombospondina 1/genética , Trombospondina 1/metabolismo
5.
Ann Neurol ; 92(1): 97-106, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35438200

RESUMEN

OBJECTIVE: We aimed to investigate the effectiveness of endovascular therapy (EVT) versus intravenous thrombolysis (IVT) in patients with basilar artery occlusion (BAO), based on the information of advanced imaging. METHODS: We analyzed data of stroke patients with radiologically confirmed BAO within 24 hours. BAO subjects were categorized into "top-of-the-basilar" syndrome (TOBS) and other types. An initial infarct size of <70ml and a ratio of ischemic tissue to infarct volume of ≥1.8 was defined as "target mismatch." The primary outcome was a good outcome, defined as a modified Rankin Scale score of 0 to 3 at 3 months. Propensity score adjustment and inverse probability of treatment weighting (IPTW) propensity score methods were used. RESULTS: Among 474 BAO patients, 93 (19.6%) were treated with IVT prior to EVT, 91 (19.2%) were treated with IVT alone, 95 (20.0%) were treated with EVT alone, and 195 (41.1%) were treated with antithrombotic therapy. In IPTW analyses, we found no benefit of EVT over IVT for good outcome in either TOBS patients (odds ratio = 1.08, 95% confidence interval [CI] = 0.88-1.31) or those with other types (odds ratio = 1.13, 95% CI = 0.94-1.36). However, in patients with other types, if there existed a target mismatch, EVT was independently related to good outcome (odds ratio = 1.46, 95% CI = 1.17-1.81). INTERPRETATION: The "target mismatch profile" seems to be a possible candidate selection standard of EVT for those with other types of BAO. Future studies should separate TOBS from other types of BAO, and try to use advanced imaging. ANN NEUROL 2022;92:97-106.


Asunto(s)
Arteriopatías Oclusivas , Procedimientos Endovasculares , Accidente Cerebrovascular , Arteriopatías Oclusivas/diagnóstico por imagen , Arteriopatías Oclusivas/etiología , Arteriopatías Oclusivas/terapia , Arteria Basilar/diagnóstico por imagen , Procedimientos Endovasculares/métodos , Humanos , Infarto , Reperfusión , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica/métodos , Resultado del Tratamiento
6.
Opt Express ; 31(23): 37574-37582, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017884

RESUMEN

The heterogeneous integration of silicon with III-V materials provides a way to overcome silicon's limited optical properties toward a broad range of photonic applications. Hybrid modes are a promising way to integrate such heterogeneous Si/III-V devices, but it remains unclear how to utilize these modes to achieve photonic crystal cavities. Herein, using 3D finite-difference time-domain simulations, we propose a hybrid Si-GaAs photonic crystal cavity design that operates at telecom wavelengths and can be fabricated without requiring careful alignment. The hybrid cavity consists of a patterned silicon waveguide that is coupled to a wider GaAs slab featuring InAs quantum dots. We show that by changing the width of the silicon cavity waveguide, we can engineer the hybrid modes and control the degree of coupling to the active material in the GaAs slab. This provides the ability to tune the cavity quality factor while balancing the device's optical gain and nonlinearity. With this design, we demonstrate cavity mode confinement in the GaAs slab without directly patterning it, enabling strong interaction with the embedded quantum dots for applications such as low-power-threshold lasing and optical bistability (156 nW and 18.1 µW, respectively). This heterogeneous integration of an active III-V material with silicon via a hybrid cavity design suggests a promising approach for achieving on-chip light generation and low-power nonlinear platforms.

7.
Opt Lett ; 48(19): 4961-4964, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773360

RESUMEN

Integrated optical filters are key components in various photonic integrated circuits for applications of communication, spectroscopy, etc. The dichroic filters can be flexibly cascaded to construct filters with various channel numbers and bandwidths. Therefore, the development of high-performance and compact dichroic filters is crucial. In this work, we develop the dichroic filters with 1.49/1.55-µm channels by an inverse design. Benefiting from a search-space-dimension control strategy and advanced optimization algorithm, our efficient design method results in two high-performance dichroic filters without and with subwavelength gratings (SWGs). The comparison suggests that SWGs in filters can be useful for loss reduction and footprint compression by dispersion engineering. The developed dichroic filter with SWGs exhibits measured bandwidths of 26/29 nm, excess losses of < 0.5 dB, and crosstalks of <-10 dB with a compact footprint of 2.5 × 22.0 µm2. It has advantages in performance or compactness compared to the previously reported counterparts. A triplexer with a footprint of 10.5 × 117 µm2 is developed based on the dichroic filters, also showing decent overall performance and compactness.

8.
Fish Shellfish Immunol ; 138: 108816, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37236553

RESUMEN

The occurrence of hepatopancreatic necrosis syndrome (HPNS) has seriously affected the sustainable development of Chinese mitten crab (Eriocheir sinensis) farming industry. Limited studies have focused on the immune responses in crabs with HPNS. Serine proteases (SPs) and SP homologs (SPHs) play important roles in the innate immunity of crustaceans. This study investigated the effects of HPNS on the expression levels of genes related to prophenoloxidase (proPO) activation system, and the relationship between Runt transcription factor and the transcriptions of these genes. Eight SPs and five SPHs (SPH1-4, Mas) were identified from E. sinensis. SPs contain a catalytic triad of "HDS", while SPHs lack a catalytic residue. SPs and SPHs all contain a conservative Tryp_SPc domain. Evolutionary analysis showed that EsSPs, EsSPHs, EsPO, and EsRunt were clustered with SPs, SPHs, POs, and Runts of other arthropods, respectively. In crabs with HPNS, the expression levels of six SPs (1, 3, 4, 6, 7, and 8), five SPHs, and PO were significantly upregulated in the hepatopancreas. The knockdown of EsRunt could evidently decrease the expression levels of four SPs (3, 4, 5 and 8), five SPHs (SPH1-4, Mas), and PO. Therefore, the occurrence of HPNS activates the proPO system. Furthermore, the expression levels of partial genes related to proPO system were regulated by Runt. The activation of innate immune system may be a strategy for crabs with HPNS to improve immunity and fight diseases. Our study provides a new understanding of the relationship between HPNS and innate immunity.


Asunto(s)
Braquiuros , Síndrome Neurológico de Alta Presión , Animales , Serina Proteasas/química , Serina Endopeptidasas , Necrosis/veterinaria , Braquiuros/genética , Braquiuros/metabolismo , Inmunidad Innata/genética
9.
BMC Geriatr ; 23(1): 310, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202743

RESUMEN

INTRODUCTION: Atrial fibrillation is the most common atrial arrhythmia in the perioperative period and is associated with prolonged hospital stay, increased costs, and increased mortality. However, there are few data on the predictors and incidence of preoperative atrial fibrillation in hip fracture patients. Our aim was to identify predictors of preoperative atrial fibrillation and to propose a valid clinical prediction model. METHODS: Predictor variables included demographic and clinical variables. LASSO regression analyzes were performed to identify predictors of preoperative atrial fibrillation, and models were constructed and presented as nomograms. Area under the curve, calibration curve, and decision curve analysis (DCA) were used to examine the discriminative power, calibration, and clinical efficacy of the predictive models. Bootstrapping was used for validation. RESULTS: A total of 1415 elderly patients with hip fractures were analyzed. Overall, 7.1% of patients had preoperative atrial fibrillation, and they were at significant risk for thromboembolic events. Patients with preoperative AF had a significantly longer delay in surgery than those without preoperative atrial fibrillation (p < 0.05). Predictors for preoperative atrial fibrillation were hypertension (OR 1.784, 95% CI 1.136-2.802, p < 0.05), C-reactive protein at admission (OR 1.329, 95% CI 1.048-1.662, p < 0.05), systemic inflammatory response index at admission (OR 2.137, 95% CI, 1.678-2.721 p < 0.05), Age-Adjusted Charlson Comorbidity Index (OR 1.542, 95% CI 1.326-1.794, p < 0.05), low potassium(OR 2.538, 95% CI 1.623-3.968, p < 0.05), anemia(OR 1.542, 95% CI 1.326-1.794, p < 0.05). Good discrimination and calibration effect of the model was showed. Interval validation could still achieve the C-index value of 0.799. DCA demonstrated this nomogram has good clinical utility. CONCLUSION: This model has a good predictive effect on preoperative atrial fibrillation in elderly patients with hip fractures, which can help to better plan clinical evaluation.


Asunto(s)
Fibrilación Atrial , Fracturas de Cadera , Humanos , Anciano , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Factores de Riesgo , Modelos Estadísticos , Estudios Retrospectivos , Pronóstico , Fracturas de Cadera/epidemiología , Fracturas de Cadera/cirugía
10.
BMC Pulm Med ; 23(1): 46, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36717804

RESUMEN

OBJECTIVES: To investigate mRNA and long non-coding RNA (lncRNA) expression profiles in monocrotaline (MCT)- mice. MATERIALS AND METHODS: Lung tissues (Control-Vehicle, MCT-Vehicle, and MCT-C75) were examined by high-throughput sequencing (HTS). Aberrantly expressed mRNAs and lncRNAs were analyzed by bioinformatics. Cell proliferation and cell cycle analysis were performed to detect the potential protective effects of C75, an inhibitor of fatty acid synthase. The signaling pathways associated with inflammatory responses were verified by real time-PCR. RESULTS: RNA sequencing data reveals 285 differentially expressed genes (DEGs) and 147 lncRNAs in the MCT-Vehicle group compared to the control. After five-week of C75 treatment, 514 DEGs and 84 lncRNAs are aberrant compared to the MCT-Vehicle group. Analysis of DEGs and lncRNA target genes reveals that they were enriched in pathways related to cell cycle, cell division, and vascular smooth muscle contraction that contributes to the PAH pathological process. Subsequently, the expression of eight DEGs and three lncRNAs is verified using RT-PCR. Differentially expressed lncRNAs (ENSMUSG00000110393.2, Gm38850, ENSMUSG00000100465.1, ENSMUSG00000110399.1) may associate in PAH pathogenesis as suggested by co-expression network analysis. C75 can protect against MCT-induced PAH through its anti-inflammatory and anti-proliferation. CONCLUSIONS: These DEGs and lncRNAs can be considered as novel candidate regulators of PAH pathogenesis. We propose that C75 treatment can partially reverse PAH pathogenesis through modulating cell cycle, cell proliferation, and anti-inflammatory.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , ARN Largo no Codificante , Animales , Ratones , Antiinflamatorios/uso terapéutico , Hipertensión Pulmonar Primaria Familiar , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética
11.
J Med Internet Res ; 25: e44795, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37856760

RESUMEN

Lockdowns and border closures due to COVID-19 imposed mental, social, and financial hardships in many societies. Living with the virus and resuming normal life are increasingly being advocated due to decreasing virus severity and widespread vaccine coverage. However, current trends indicate a continued absence of effective contingency plans to stop the next more virulent variant of the pandemic. The COVID-19-related mask waste crisis has also caused serious environmental problems and virus spreads. It is timely and important to consider how to precisely implement surveillance for the dynamic clearance of COVID-19 and how to efficiently manage discarded masks to minimize disease transmission and environmental hazards. In this viewpoint, we sought to address this issue by proposing an appropriate strategy for intelligent surveillance of infected cases and centralized management of mask waste. Such an intelligent strategy against COVID-19, consisting of wearable mask sample collectors (masklect) and voiceprints and based on the STRONG (Spatiotemporal Reporting Over Network and GPS) strategy, could enable the resumption of social activities and economic recovery and ensure a safe public health environment sustainably.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Máscaras , COVID-19/epidemiología , COVID-19/prevención & control , Salud Pública
12.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139250

RESUMEN

The occurrence and development of tumors require the metabolic reprogramming of cancer cells, namely the alteration of flux in an autonomous manner via various metabolic pathways to meet increased bioenergetic and biosynthetic demands. Tumor cells consume large quantities of nutrients and produce related metabolites via their metabolism; this leads to the remodeling of the tumor microenvironment (TME) to better support tumor growth. During TME remodeling, the immune cell metabolism and antitumor immune activity are affected. This further leads to the escape of tumor cells from immune surveillance and therefore to abnormal proliferation. This review summarizes the regulatory functions associated with the abnormal biosynthesis and activity of metabolic signaling molecules during the process of tumor metabolic reprogramming. In addition, we provide a comprehensive description of the competition between immune cells and tumor cells for nutrients in the TME, as well as the metabolites required for tumor metabolism, the metabolic signaling pathways involved, and the functionality of the immune cells. Finally, we summarize current research targeted at the development of tumor immunotherapy. We aim to provide new concepts for future investigations of the mechanisms underlying the metabolic reprogramming of tumors and explore the association of these mechanisms with tumor immunity.


Asunto(s)
Reprogramación Metabólica , Neoplasias , Humanos , Transducción de Señal , Vigilancia Inmunológica , Inmunoterapia , Microambiente Tumoral
13.
J Cell Mol Med ; 26(1): 163-177, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34859581

RESUMEN

Chlamydia trachomatis persistent infection is the leading cause of male prostatitis and female genital tract diseases. Inhibition of host cell apoptosis is the key to maintaining Chlamydia survival in vivo, and long noncoding RNAs (lncRNAs) play important roles in its developmental cycle and pathogenesis. However, it is not clear how lncRNAs regulate persistent Chlamydia infection. Here, using a microarray method, we identified 1718 lncRNAs and 1741 mRNAs differentially expressed in IFN-γ-induced persistent C. trachomatis infection. Subsequently, 10 upregulated and 5 downregulated differentially expressed lncRNAs were verified by qRT-PCR to confirm the reliability of the chip data. The GO and KEGG analyses revealed that differentially regulated transcripts were predominantly involved in various signalling pathways related to host immunity and apoptosis response. Targeted silencing of three lncRNAs (MIAT, ZEB1-AS1 and IRF1) resulted in increased apoptosis rates. Furthermore, interference with lncRNA MIAT caused not only an obvious downregulation of the Bcl-2/Bax ratio but also a marked release of cytochrome c, resulting in a significantly elevated level of caspase-3 activation. Meanwhile, MIAT was involved in the regulation of chlamydial development during the persistent infection. Collectively, these observations shed light on the enormous complex lncRNA regulatory networks involved in mitochondria-mediated host cell apoptosis and the growth and development of C. trachomatis.


Asunto(s)
Apoptosis , Infecciones por Chlamydia , ARN Largo no Codificante , Apoptosis/genética , Infecciones por Chlamydia/genética , Chlamydia trachomatis/patogenicidad , Femenino , Humanos , Masculino , Mitocondrias/metabolismo , ARN Largo no Codificante/genética , Reproducibilidad de los Resultados , Regulación hacia Arriba/genética
14.
Circulation ; 143(18): 1809-1823, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33626882

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a multifactorial condition with both genetic and exogenous causes. The contribution of tissue-specific functional networks to the development of atherosclerosis remains largely unclear. The aim of this study was to identify and characterize central regulators and networks leading to atherosclerosis. METHODS: Based on several hundred genes known to affect atherosclerosis risk in mouse (as demonstrated in knockout models) and human (as shown by genome-wide association studies), liver gene regulatory networks were modeled. The hierarchical order and regulatory directions of genes within the network were based on Bayesian prediction models, as well as experimental studies including chromatin immunoprecipitation DNA-sequencing, chromatin immunoprecipitation mass spectrometry, overexpression, small interfering RNA knockdown in mouse and human liver cells, and knockout mouse experiments. Bioinformatics and correlation analyses were used to clarify associations between central genes and CAD phenotypes in both human and mouse. RESULTS: The transcription factor MAFF (MAF basic leucine zipper transcription factor F) interacted as a key driver of a liver network with 3 human genes at CAD genome-wide association studies loci and 11 atherosclerotic murine genes. Most importantly, expression levels of the low-density lipoprotein receptor (LDLR) gene correlated with MAFF in 600 CAD patients undergoing bypass surgery (STARNET [Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task]) and a hybrid mouse diversity panel involving 105 different inbred mouse strains. Molecular mechanisms of MAFF were tested in noninflammatory conditions and showed positive correlation between MAFF and LDLR in vitro and in vivo. Interestingly, after lipopolysaccharide stimulation (inflammatory conditions), an inverse correlation between MAFF and LDLR in vitro and in vivo was observed. Chromatin immunoprecipitation mass spectrometry revealed that the human CAD genome-wide association studies candidate BACH1 (BTB domain and CNC homolog 1) assists MAFF in the presence of lipopolysaccharide stimulation with respective heterodimers binding at the MAF recognition element of the LDLR promoter to transcriptionally downregulate LDLR expression. CONCLUSIONS: The transcription factor MAFF was identified as a novel central regulator of an atherosclerosis/CAD-relevant liver network. MAFF triggered context-specific expression of LDLR and other genes known to affect CAD risk. Our results suggest that MAFF is a missing link between inflammation, lipid and lipoprotein metabolism, and a possible treatment target.


Asunto(s)
Aterosclerosis/metabolismo , Colesterol/metabolismo , Proteínas de Unión al ADN/metabolismo , Inflamación/metabolismo , Factor de Transcripción MafF/metabolismo , Proteínas Nucleares/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Noqueados
15.
BMC Genomics ; 23(1): 76, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073842

RESUMEN

BACKGROUND: Leeches are classic annelids that have a huge diversity and are closely related to people, especially medicinal leeches. Medicinal leeches have been widely utilized in medicine based on the pharmacological activities of their bioactive ingredients. Comparative genomic study of these leeches enables us to understand the difference among medicinal leeches and other leeches and facilitates the discovery of bioactive ingredients. RESULTS: In this study, we reported the genome of Whitmania pigra and compared it with Hirudo medicinalis and Helobdella robusta. The assembled genome size of W. pigra is 177 Mbp, close to the estimated genome size. Approximately about 23% of the genome was repetitive. A total of 26,743 protein-coding genes were subsequently predicted. W. pigra have 12346 (46%) and 10295 (38%) orthologous genes with H. medicinalis and H. robusta, respectively. About 20 and 24% genes in W. pigra showed syntenic arrangement with H. medicinalis and H. robusta, respectively, revealed by gene synteny analysis. Furthermore, W. pigra, H. medicinalis and H. robusta expanded different gene families enriched in different biological processes. By inspecting genome distribution and gene structure of hirudin, we identified a new hirudin gene g17108 (hirudin_2) with different cysteine patterns. Finally, we systematically explored and compared the active substances in the genomes of three leech species. The results showed that W. pigra and H. medicinalis exceed H. robusta in both kinds and gene number of active molecules. CONCLUSIONS: This study reported the genome of W. pigra and compared it with other two leeches, which provides an important genome resource and new insight into the exploration and development of bioactive molecules of medicinal leeches.


Asunto(s)
Hirudo medicinalis , Sanguijuelas , Animales , Genoma , Genómica , Hirudo medicinalis/genética , Humanos , Sanguijuelas/genética
16.
BMC Plant Biol ; 22(1): 71, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35176994

RESUMEN

BACKGROUND: Calcium (Ca) deficiency can cause apple bitter pit, reduce the quality and shelf life. WRKY transcription factors play essential role in plant response to multiple disorders. However, the underlying mechanisms causing bitter pit in apple fruit due to Ca deficiency during storage is extremely limited. RESULTS: In the present study, the nutritional metabolites and reactive oxygen species (ROS) were compared in Ca-deficient and healthy apple fruit (CK) during storage. Results showed that Ca-deficient apples sustained significantly higher production of ROS, PPO activity, flavonoids, total phenol, total soluble solids (TSS), and sucrose contents, but the contents of Ca, H2O2, titratable acids (TA), glucose and fructose were significantly lower than those of CK during storage. Principal component analysis (PCA) showed that TSS, •O2-, PPO, malondialdehyde (MDA) and Ca were the main factors, and TSS had a positive correlation with sucrose. Furthermore, transcriptome analysis revealed that WRKYs were co-expressed with sucrose metabolism-related enzymes (SWEETs, SS, SPS). qRT-PCR and correlation analysis indicated that MdWRKY75 was correlated positively with MdSWEET1. Moreover, transient overexpression of MdWRKY75 could significantly increase the sucrose content and promote the expression of MdSWEET1 in apple fruit. CONCLUSIONS: Calcium deficiency could decrease antioxidant capacity, accelerate nutritional metabolism and up-regulate the expression of WRKYs in apple with bitter pit. Overexpression of MdWRKY75 significantly increased sucrose accumulation and the expression of MdSWEET1. These findings further strengthened knowledge of the basic molecular mechanisms in calcium deficiency apple flesh and contributed to improving the nutritional quality of apple fruit.


Asunto(s)
Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Sacarosa/metabolismo , Factores de Transcripción/genética , Ácido Ascórbico/metabolismo , Calcio/metabolismo , Flavonoides/metabolismo , Almacenamiento de Alimentos , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Fenoles/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas , Factores de Transcripción/metabolismo
17.
Fish Shellfish Immunol ; 124: 107-117, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35378309

RESUMEN

Eriocheir sinensis is a crustacean with great economic value, but the occurrence of hepatopancreatic necrosis disease (HPND) severely restricts the development of crab aquaculture. Study on the survival mechanism of crabs with HPND is beneficial to provide new strategies for disease prevention and control. The Forkhead box O (FOXO) transcription factor family is involved in various key biological processes of organisms. In this study, a FOXO gene (named as EsFOXO) from E. sinensis was cloned. The full-length cDNA of EsFOXO is 2592 bp containing a 2133 bp open reading frame that encodes 710 amino acids. EsFOXO was widely distributed in multiple immune tissues. Further study found that the expression of EsFOXO in the intestine of crabs with HPND was significantly upregulated compared with that in the normal crabs. However, whether EsFOXO is involved in the immune and metabolic regulation of crabs remains unknown. RNA interference analysis showed that EsFOXO participates in the positive regulation of the expression of two pancreatic lipases, three anti-lipopolysaccharide factors, and three crustins. Results from our research suggest that two strategies are adopted by crabs with HPND for survival under starvation: on the one hand, the synthesis of antimicrobial peptides is increased to improve the innate immunity; on the other hand, the expression of enzymes correlated with lipid catabolism is up-regulated that mobilizes the fat in the crab, going through catabolism. Our study provides more evidence for an in-depth understanding of the survival mechanism of crabs with HPND.


Asunto(s)
Braquiuros , Animales , Factores de Transcripción Forkhead/genética , Inmunidad Innata/genética , Lipasa/genética , Lipasa/metabolismo , Lipopolisacáridos/metabolismo , Necrosis , Péptidos/genética , Filogenia
18.
Fish Shellfish Immunol ; 128: 168-180, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35921935

RESUMEN

Proteins of Spätzle family play an essential role in innate immunity in invertebrates by activating the Toll pathway to induce the expression of antimicrobial peptides. However, little is known about the function of Spätzle in in the immune response of the Chinese mitten crab. In the present study, three novel Spätzle genes (named as EsSpz1, EsSpz2, and EsSpz3) were identified from Eriocheir sinensis. The genome structure of EsSpz1 contains two exons and an intron. Three Spätzle proteins all contain a Pfam Spaetzle domain. In the evolution, EsSpz1-3 cluster with other Spätzle proteins from crustaceans. EsSpz1-3 were widely distributed in multiple immune tissues. The expression levels of EsSpz1-3 in the intestine were remarkably upregulated after white spot syndrome virus (WSSV) challenge. The knockdown of EsSpz1-3 remarkably decreased the expressions of crustins and anti-lipopolysaccharide factors during WSSV infection. Moreover, EsSpz1-3 silencing remarkably increased the expression of WSSV envelope protein VP28. These findings suggest that new-found EsSpz1-3 in E. sinensis could promote the synthesis of antimicrobial peptides and inhibit the expression of VP28 during WSSV infection. Our study indicates that EsSpz1-3 in E. sinensis may participate in the innate immune defenses against WSSV by inducing the expression of antimicrobial peptides. This study provides new knowledge for the function of Spätzle in the antiviral immune defense in crustacean.


Asunto(s)
Virus del Síndrome de la Mancha Blanca 1 , Animales , Antivirales , Proteínas de Artrópodos , Inmunidad Innata/genética , Virus del Síndrome de la Mancha Blanca 1/fisiología
19.
Fish Shellfish Immunol ; 127: 1127-1138, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35870750

RESUMEN

C-type lectin (CTL) is an important pattern recognition receptor that play vital functions in the innate immunity. Many soluble CTLs in crustacean participate in the inhibition or promotion of white spot syndrome virus (WSSV) infection. However, whether transmembrane CTLs participate in WSSV infection in crustacean remains unknown. In the present study, four spliced isoforms of a transmembrane CTL (designated as PcTlec) from Procambarus clarkii were identified for the first time. The genome structure of PcTlec contains eight exons, six known introns, and one unknown intron. PcTlec-isoform1 is produced by intron retention, whereas PcTlec-isoform3 and PcTlec-isoform4 are produced by exon skipping. All of them contain the transmembrane domain and characteristic carbohydrate recognition domain (CRD). Four PcTlec isoforms were mainly expressed in the hepatopancreas, stomach, and intestine. After WSSV challenge, the expression levels of PcTlec-isoform1-4 in the intestine were upregulated. The knockdown of the region shared by four PcTlec isoforms evidently decreased the expression of WSSV envelope protein VP28 and the copies of viral particles. A recombinant protein (rPcTlec-CRD) containing the CRD that was shared by four PcTlec isoforms was acquired by procaryotic expression system. The injection of purified rPcTlec-CRD protein evidently increased the VP28 expression and WSSV copies during viral infection. Moreover, rPcTlec-CRD could directly bind to WSSV and interact with VP28 protein. These findings indicate that new-found transmembrane CTL isoforms in P. clarkii may act as viral receptors that facilitate WSSV infection. This study contributes to the recognition and understanding of the functions of transmembrane CTLs in crustacean in the infection of host by WSSV.


Asunto(s)
Virus del Síndrome de la Mancha Blanca 1 , Animales , Astacoidea , Hepatopáncreas , Lectinas Tipo C/genética , Isoformas de Proteínas/genética , Virus del Síndrome de la Mancha Blanca 1/fisiología
20.
Environ Res ; 210: 112920, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35167850

RESUMEN

Graphitic carbon nitride (CN), as a non-metal material, has emerged as a promising photocatalyst to address environmental issues with the favorable band gap and chemical stability. The porous oxygen-doped CN nanosheets (CNO) were synthesized by an ecofriendly and efficient self-assembled approach using a sole urea as the precursor. The CNO photocatalysts were derived from the hydrogen-bonded cyanuric acid-urea supramolecular complex, which were obtained by pretreatment of urea at high temperature and pressure. The homogeneous supramolecular assembly was advantageous to the formation of uniform porous and oxygen-doped CN nanosheets. The formation process of the supramolecular intermediate and the CNO nanosheets were investigated. Moreover, doping amount of O in CNO could be controlled by the time of the high-pressure thermal polymerization of urea. The characterization results shown that the O atoms were successfully doped into the framework of CN by substitution the N atoms to form the C-O structures. The obtained CNO photocatalysts demonstrated the excellent visible-light photocatalytic performances for sulfamerazine (SMR) degradation, which was ascribed to synergistic interaction of porous structure and O doping. The degradation intermediates of SMR were identified and the degradation pathway were also proposed. Furthermore, density functional theory (DFT) calculations proved that O doping changed the electronic structure of CN, resulting in more easier to activate O2. This work provides a novel perceptive for the development of high-performance nonmetal photocatalysts by using the homogeneous supramolecular assembly, which exhibits great potential in the environmental treatment.


Asunto(s)
Contaminantes Ambientales , Oxígeno , Antibacterianos , Catálisis , Grafito , Luz , Compuestos de Nitrógeno , Oxígeno/química , Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA