Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Dis ; 152: 105299, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33600953

RESUMEN

Triosephosphate isomerase (TPI) deficiency (Df) is a rare recessive metabolic disorder that manifests as hemolytic anemia, locomotor impairment, and progressive neurodegeneration. Research suggests that TPI Df mutations, including the "common" TPIE105Dmutation, result in reduced TPI protein stability that appears to underlie disease pathogenesis. Drosophila with the recessive TPIsugarkill allele (a.k.a. sgk or M81T) exhibit progressive locomotor impairment, neuromuscular impairment and reduced longevity, modeling the human disorder. TPIsugarkill produces a functional protein that is degraded by the proteasome. Molecular chaperones, such as Hsp70 and Hsp90, have been shown to contribute to the regulation of TPIsugarkill degradation. In addition, stabilizing the mutant protein through chaperone modulation results in improved TPI deficiency phenotypes. To identify additional regulators of TPIsugarkill degradation, we performed a genome-wide RNAi screen that targeted known and predicted quality control proteins in the cell to identify novel factors that modulate TPIsugarkill turnover. Of the 430 proteins screened, 25 regulators of TPIsugarkill were identified. Interestingly, 10 proteins identified were novel, previously undescribed Drosophila proteins. Proteins involved in co-translational protein quality control and ribosome function were also isolated in the screen, suggesting that TPIsugarkill may undergo co-translational selection for polyubiquitination and proteasomal degradation as a nascent polypeptide. The proteins identified in this study may reveal novel pathways for the degradation of a functional, cytosolic protein by the ubiquitin proteasome system and define therapeutic pathways for TPI Df and other biomedically important diseases.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Proteínas de Drosophila/metabolismo , Triosa-Fosfato Isomerasa/deficiencia , Triosa-Fosfato Isomerasa/metabolismo , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster
2.
Dev Cell ; 59(9): 1110-1131.e22, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38569552

RESUMEN

The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Hematopoyéticas , Células Madre Pluripotentes , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/citología , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
3.
Nat Commun ; 14(1): 7506, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980413

RESUMEN

Apical extracellular matrices (aECMs) are complex extracellular compartments that form important interfaces between animals and their environment. In the adult C. elegans cuticle, layers are connected by regularly spaced columnar structures known as struts. Defects in struts result in swelling of the fluid-filled medial cuticle layer ('blistering', Bli). Here we show that three cuticle collagens BLI-1, BLI-2, and BLI-6, play key roles in struts. BLI-1 and BLI-2 are essential for strut formation whereas activating mutations in BLI-6 disrupt strut formation. BLI-1, BLI-2, and BLI-6 precisely colocalize to arrays of puncta in the adult cuticle, corresponding to struts, initially deposited in diffuse stripes adjacent to cuticle furrows. They eventually exhibit tube-like morphology, with the basal ends of BLI-containing struts contact regularly spaced holes in the cuticle. Genetic interaction studies indicate that BLI strut patterning involves interactions with other cuticle components. Our results reveal strut formation as a tractable example of precise aECM patterning at the nanoscale.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Colágeno/genética , Matriz Extracelular/genética
4.
Curr Opin Biotechnol ; 78: 102810, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36182872

RESUMEN

Artificially constructing a fully-fledged tissue - comprising multiple cell types whose identities and spatial arrangements reflect those of a native tissue - remains daunting. There has been impressive progress in generating three-dimensional cell cultures (often dubbed 'organoids') from stem cells. However, it is critical to appreciate that not all such three-dimensional cultures will intrinsically self-organize to spontaneously recreate native tissue architecture. Instead, most tissues in vivo are exogenously patterned by extracellular signaling gradients emanating from organizer cells located outside the tissue. Innovations to impose artificial signaling gradients - using microfluidics, optogenetics, or introducing organizer cells - could thus prove decisive to create spatially patterned tissues in vitro. Additionally, unified terminology to describe these tissue-like simulacra as 'aggregates', 'spheroids', or 'organoids' will be critical for the field.


Asunto(s)
Organoides , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Microfluídica/métodos , Transducción de Señal
5.
Front Bioeng Biotechnol ; 9: 643722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644027

RESUMEN

Biofilms are structured microbial communities attached to surfaces, which play a significant role in the persistence of biofoulings in both medical and industrial settings. Bacteria in biofilms are mostly embedded in a complex matrix comprised of extracellular polymeric substances that provide mechanical stability and protection against environmental adversities. Once the biofilm is matured, it becomes extremely difficult to kill bacteria or mechanically remove biofilms from solid surfaces. Therefore, interrupting the bacterial surface sensing mechanism and subsequent initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Noting that the process of bacterial adhesion is influenced by many factors, including material surface properties, this review summarizes recent works dedicated to understanding the influences of surface charge, surface wettability, roughness, topography, stiffness, and combination of properties on bacterial adhesion. This review also highlights other factors that are often neglected in bacterial adhesion studies such as bacterial motility and the effect of hydrodynamic flow. Lastly, the present review features recent innovations in nanotechnology-based antifouling systems to engineer new concepts of antibiofilm surfaces.

6.
Fac Rev ; 9: 27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33659959

RESUMEN

Apical extracellular matrices (aECMs) are the extracellular layers on the apical sides of epithelia. aECMs form the outer layer of the skin in most animals and line the luminal surface of internal tubular epithelia. Compared to the more conserved basal ECMs (basement membranes), aECMs are highly diverse between tissues and between organisms and have been more challenging to understand at mechanistic levels. Studies in several genetic model organisms are revealing new insights into aECM composition, biogenesis, and function and have begun to illuminate common principles and themes of aECM organization. There is emerging evidence that, in addition to mechanical or structural roles, aECMs can participate in reciprocal signaling with associated epithelia and other cell types. Studies are also revealing mechanisms underlying the intricate nanopatterns exhibited by many aECMs. In this review, we highlight recent findings from well-studied model systems, including the external cuticle and ductal aECMs of Caenorhabditis elegans, Drosophila melanogaster, and other insects and the internal aECMs of the vertebrate inner ear.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA