Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 439(2): 114097, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38796135

RESUMEN

Leucine-rich α2-glycoprotein-1 (LRG1) is overexpressed in various cancers, including non-small cell lung cancer (NSCLC), but its role in NSCLC cell metastasis is not well understood. In this study, NSCLC cell exosomes were analyzed using different techniques, and the impact of exosomal LRG1 on NSCLC cell behavior was investigated through various assays both in vitro and in vivo. The study revealed that LRG1, found abundantly in NSCLC cells and exosomes, enhanced cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Exosomal LRG1 was shown to promote NSCLC cell metastasis in animal models. Additionally, the interaction between LRG1 and fibronectin 1 (FN1) in the cytoplasm was identified. It was observed that FN1 could counteract the effects of LRG1 knockdown on cell regulation induced by exosomes derived from NSCLC cells. Overall, the findings suggest that targeting exosomal LRG1 or FN1 may hold therapeutic potential for treating NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Proliferación Celular , Exosomas , Fibronectinas , Glicoproteínas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Exosomas/metabolismo , Exosomas/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Proliferación Celular/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Animales , Glicoproteínas/metabolismo , Glicoproteínas/genética , Movimiento Celular/genética , Ratones , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Ratones Desnudos , Metástasis de la Neoplasia , Ratones Endogámicos BALB C , Regulación Neoplásica de la Expresión Génica , Células A549
2.
J Org Chem ; 89(5): 2984-2995, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334453

RESUMEN

Rh(III)-catalyzed C7-alkylation of isatogens (indolin-3-one N-oxides) with malonic acid diazoesters has been developed. This strategy utilizes oxygen anion on the N-oxide group of isatogens as a directing group and successfully achieves the synthesis of a series of C7-alkylated isatogens with moderate to good yields (48-86% yields). Moreover, the N-oxides of isatogens can not only serve as the simple directing group for C7-H bond cleavage but also be deoxidized for easy removal.

3.
J Biomech Eng ; 145(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477949

RESUMEN

Axial tibial rotation is a characteristic motion of the knee, but how it occurs with knee flexion is controversial. We investigated the mechanisms of tibial rotations by analyzing in vivo tibiofemoral articulations. Twenty knees of 20 living human subjects were investigated during a weightbearing flexion from full extension to maximal flexion using a dual fluoroscopic imaging system. Tibiofemoral articular contact motions on medial and lateral femoral condyles and tibial surfaces were measured at flexion intervals of 15 deg from 0 deg to 120 deg. Axial tibial rotations due to the femoral and tibial articular motions were compared. Articular contact distances were longer on femoral condyles than on tibial surfaces at all flexion intervals (p < 0.05). The articular distance on medial femoral condyle is longer than on lateral side during flexion up to 60 deg. The internal tibial rotation was 6.8 ± 4.5 deg (Mean ± SD) at the flexion interval of 0-15 deg, where 6.1 ± 2.6 deg was due to articulations on femoral condyles and 0.7 ± 5.1 deg due to articulations on tibial surfaces (p < 0.05). The axial tibial rotations due to articulations on femoral condyles are significantly larger than those on tibial surfaces until 60 deg of flexion (p < 0.05). Minimal additional axial tibial rotations were observed beyond 60 deg of flexion. The axial tibial rotations were mainly attributed to uneven articulations on medial and lateral femoral condyles. These data can provide new insights into the understanding of mechanisms of axial tibial rotations and serve as baseline knowledge for improvement of knee surgeries.


Asunto(s)
Articulación de la Rodilla , Prótesis de la Rodilla , Humanos , Fenómenos Biomecánicos , Articulación de la Rodilla/fisiología , Tibia/fisiología , Fémur/fisiología , Rango del Movimiento Articular , Soporte de Peso/fisiología , Rotación
4.
Arch Orthop Trauma Surg ; 142(9): 2313-2322, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34406507

RESUMEN

BACKGROUND: There has been no consensus on the benefit of retaining the anterior cruciate ligament (ACL) in TKAs. This study aims to review recent evidences around the kinematics of bicruciate retaining (BCR) total knee arthroplasty (TKA). MATERIALS AND METHODS: A search of the literature was conducted on PubMed and Web of Science. Reports that assessed the BCR TKA kinematics, including both in vitro cadaveric studies and in vivo clinical studies, were reviewed. RESULTS: A total number of 169 entries were obtained. By exclusion criteria, five in vitro studies using cadaveric knee specimens and six in vivo studies using patient cohorts were retained. In vitro studies showed a low internal rotation (< 10°) throughout the flexion path in all BCR TKAs. Compared to native knees, the difference in the internal rotation was maximal during early and late flexion; the femur in the BCR TKA was significantly more anteriorly positioned (1.7-3.6 mm from 0° to 110°) and more externally rotated (3.6°-4.2° at 110° and 120°). In vivo studies revealed that the native knee kinematics, in general, were not fully restored after BCR TKA during various knee activates (squatting, level-walking, and downhill-walking). There are asymmetric kinematics during the stance phase of gait cycle and a smaller range of axial rotation (23% patients exhibiting external tibial rotation) throughout the gait cycle in BCR TKAs. CONCLUSIONS: Critical insights in the complex BCR TKA biomechanics have been reported from recent laboratory kinematics studies. However, whether contemporary BCR TKAs can fully restore native knee kinematics remains debatable, warranting further investigations.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Fenómenos Biomecánicos , Cadáver , Humanos , Rodilla/cirugía , Articulación de la Rodilla/fisiología , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular
5.
Arch Orthop Trauma Surg ; 142(10): 2849-2855, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34480621

RESUMEN

BACKGROUND: Gap balance of the knee at 0° and 90° of flexion has been pursued in total knee arthroplasty (TKA) with the trans-epicondyle axis (TEA) as a reference. This study investigated the height changes of the tibiofemoral articulation and compared the data with the femoral condyle height changes measured using different flexion axes. MATERIALS AND METHODS: Twenty healthy knees were investigated during an in vivo weightbearing flexion using a technique combining MRI and a dual fluoroscopic imaging system (DFIS). The tibiofemoral contact points and the femoral condyle heights [measured using: TEA, geometric center axis (GCA), and iso-height axis (IHA)] were determined at each flexion angle. The height changes of the articular contact points and the femoral condyles were compared along the flexion path. RESULTS: The changes of the medial and lateral contact point heights were within 2.5 mm along the flexion path. The changes of the medial and lateral condyle heights were within 8.9 mm for TEA, within 4.2 mm for GCA and within 3.0 mm for IHA. The height changes measured by the contact points and IHA are similar (p > 0.05), and both are significantly smaller than those measured using the TEA and GCA (p < 0.05). CONCLUSIONS: The TEA and GCA measured varying femoral condyle heights, but the IHA resulted in minimal condyle height changes and could better represent the articulation characteristics of the knee. The data suggested that the IHA could be used as an alternative reference to guide surgical preparation of gap balance along the knee flexion path during TKA surgeries.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Artroplastia de Reemplazo de Rodilla/métodos , Fenómenos Biomecánicos , Fémur/diagnóstico por imagen , Fémur/cirugía , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular
6.
Knee Surg Sports Traumatol Arthrosc ; 29(2): 600-607, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32285156

RESUMEN

PURPOSE: It is a challenge to evaluate the maintenance of medial and lateral soft tissue balance in total knee arthroplasty (TKA). This study aimed to determine the "isoheight" points and the "isoheight" axis (IHA) that can measure constant medial/lateral condyle heights during flexion of the knee, and compare the IHA with two major anatomical axes, the transepicondylar axis (TEA) and the geometric center axis (GCA). METHODS: Twenty-two healthy human knees were imaged using a combined MRI and dual fluoroscopic imaging system while performing a single-legged lunge (0°-120°). The isoheight points of the medial and lateral femoral condyles were defined as the locations with the least amount of changes in heights during the knee flexion; an IHA is the line connecting the medial and lateral isoheight points. The measured changes of the condyle heights using the IHA were compared with those measured using the TEA and GCA. RESULTS: Overall, the IHA was posterior and distal to the TEA, and anterior to the GCA. The isoheight points measured condyle height changes within 1.2 ± 2.3 mm at the medial and 0.7 ± 3.3 mm at the lateral sides during the knee flexion. Between 0° and 45°, the condyle height changes measured using the GCA (medial: 3.0 ± 1.8 mm, lateral: 2.3 ± 2.0 mm) were significantly larger than those of the IHA and the TEA (p < 0.05). Between 90° and 120°, the changes of the condyle heights measured using the TEA (medial: 5.3 ± 1.8 mm, lateral: 3.3 ± 1.8 mm) were significantly larger than those of the IHA and GCA (p < 0.05). CONCLUSION: There are isoheight points in the medial and lateral femoral condyles that can measure constant heights along the full range of knee flexion and could be used to formulate an "isoheight" axis (IHA) of the femur. The condyle height changes measured by the TEA and GCA were greater than the IHA measurements along the flexion path. These data could be used as a valuable reference to evaluate the condyle height changes after TKA surgeries and help achieve soft tissue balance and optimal knee kinematics along the flexion path. LEVEL OF EVIDENCE: IV.


Asunto(s)
Fémur/anatomía & histología , Articulación de la Rodilla/anatomía & histología , Adulto , Artroplastia de Reemplazo de Rodilla , Fenómenos Biomecánicos , Femenino , Fémur/fisiología , Fémur/cirugía , Fluoroscopía , Humanos , Imagenología Tridimensional , Rodilla/cirugía , Articulación de la Rodilla/fisiología , Articulación de la Rodilla/cirugía , Imagen por Resonancia Magnética , Masculino , Rango del Movimiento Articular , Valores de Referencia
7.
J Biomech Eng ; 142(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32060498

RESUMEN

Soft tissues observed in clinical medical images are often prestrained in tension by internal pressure or tissue hydration. For a native disc, nucleus swelling occurs in equilibrium with osmotic pressure induced by the high concentration of proteoglycan in the nucleus. The objective of this computational study was to investigate the effects of nucleus swelling on disc geometry, fiber orientation, and mechanical behavior by comparing those of prestrained and zero-pressure (unswelled) discs. Thermoelastic analysis techniques were repurposed in order to determine the zero-pressure disc geometry which, when pressurized, matches the prestrained disc geometry observed in clinical images. The zero-pressure geometry was then used in simulations to approximately represent a degenerated disc, which loses the ability of nucleus swelling but has not undergone distinct soft tissue remodeling/disruption. Our simulation results demonstrated that the loss of nucleus swelling caused a slight change in the disc geometry and fiber orientation, but a distinct deterioration in the resistance to intervertebral rotations including sagittal bending, lateral bending, and axial torsion. Different from rotational loading, in compression (with a displacement of 0.45 mm applied), a much larger stiffness (3.02 KN/mm) and a greater intradiscal pressure (IDP) (0.61 MPa) were measured in the zero-pressure disc, compared to the prestrained disc (1.41 KN/mm and 0.52 MPa). This computational study could be useful to understand mechanisms of disc degeneration, and guide the future design of disc tissue engineering material and biomimic disc implants.


Asunto(s)
Análisis de Elementos Finitos , Degeneración del Disco Intervertebral , Fuerza Compresiva , Vértebras Lumbares
8.
J Biomech Eng ; 142(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31574140

RESUMEN

Total disk arthroplasty (TDA) using an artificial disk (AD) is an attractive surgical technique for the treatment of spinal disorders, since it can maintain or restore spinal motion (unlike interbody fusion). However, adverse surgical outcomes of contemporary lumbar TDAs have been reported. We previously proposed a new mobile-bearing AD design concept featuring a biconcave ultrahigh-molecular-weight polyethylene (UHMWPE) mobile core. The objective of this study was to develop an artificial neural network (NN) based multiobjective optimization framework to refine the biconcave-core AD design considering multiple TDA performance metrics, simultaneously. We hypothesized that there is a tradeoff relationship between the performance metrics in terms of range of motion (ROM), facet joint force (FJF), and polyethylene contact pressure (PCP). By searching the resulting three-dimensional (3D) Pareto frontier after multiobjective optimization, it was found that there was a "best-tradeoff" AD design, which could balance all the three metrics, without excessively sacrificing each metric. However, for each single-objective optimum AD design, only one metric was optimal, and distinct sacrifices were observed in the other two metrics. For a commercially available biconvex-core AD design, the metrics were even worse than the poorest outcomes of the single-objective optimum AD designs. Therefore, multiobjective design optimization could be useful for achieving native lumbar segment biomechanics and minimal PCPs, as well as for improving the existing lumbar motion-preserving surgical treatments.


Asunto(s)
Fenómenos Biomecánicos , Articulación Cigapofisaria , Análisis de Elementos Finitos , Disco Intervertebral , Polietileno
9.
Knee Surg Sports Traumatol Arthrosc ; 28(3): 797-805, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30972464

RESUMEN

PURPOSE: To investigate the in vivo femoral condyle motion and synergistic function of the ACL/PCL along the weight-bearing knee flexion. METHODS: Twenty-two healthy human knees were imaged using a combined MRI and dual fluoroscopic imaging technique during a single-legged lunge (0°-120°). The medial and lateral femoral condyle translation and rotation (measured using geometric center axis-GCA), and the length changes of the ACL/PCL were analyzed at: low (0°-30°), mid-range (30°-90°) and high (90°-120°) flexion of the knee. RESULTS: At low flexion (0°-30°), the strains of the ACL and the posterior-medial bundle of the PCL decreased. The medial condyle showed anterior translation and lateral condyle posterior translation, accompanied with a sharp increase in external GCA rotation (internal tibial rotation). As the knee continued flexion in mid-range (30°-90°), both ACL and PCL were slack (with negative strain values). The medial condyle moved anteriorly before 60° of flexion and then posteriorly, accompanied with a slow increase of GCA rotation. As the knee flexed in high flexion (90°-120°), only the PCL had increasingly strains. Both medial and lateral condyles moved posteriorly with a rather constant GCA rotation. CONCLUSIONS: The ACL and PCL were shown to play a reciprocal and synergistic role during knee flexion. Mid-range reciprocal anterior-posterior femoral translation or laxity corresponds to minimal constraints of the ACL and PCL, and may represent a natural motion character of normal knees. The data could be used as a valuable reference when managing the mid-range "instability" and enhancing high flexion capability of the knee after TKAs. LEVEL OF EVIDENCE: Level IV.


Asunto(s)
Ligamento Cruzado Anterior/fisiología , Fémur/fisiología , Articulación de la Rodilla/fisiología , Ligamento Cruzado Posterior/fisiología , Adulto , Ligamento Cruzado Anterior/diagnóstico por imagen , Fenómenos Biomecánicos , Femenino , Fémur/diagnóstico por imagen , Fluoroscopía , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Ligamento Cruzado Posterior/diagnóstico por imagen , Rango del Movimiento Articular , Rotación , Tibia/diagnóstico por imagen , Tibia/fisiología , Soporte de Peso , Adulto Joven
10.
Plant Biotechnol J ; 17(2): 397-409, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29992702

RESUMEN

Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Myrica/genética , Mapeo Cromosómico , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Marcadores Genéticos/genética , Anotación de Secuencia Molecular , Myrica/crecimiento & desarrollo , Myrica/fisiología , Especificidad de Órganos , Fitomejoramiento
11.
BMC Complement Altern Med ; 18(1): 122, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29622007

RESUMEN

BACKGROUND: Crocin (CRO), chlorogenic acid (CGA), geniposide (GEN), and quercetin (QUE) are all natural compounds with anti-obesity properties, in particular, hypolipidemic effects, which have been widely used for the treatment of obesity-related metabolic diseases. However, it is not yet known whether these compounds interact synergistically. Here, we investigated the effects and molecular mechanisms of CRO, CGA, GEN, QUE, and a combination of all four compounds (CCGQ), on lipid accumulation in human hepatoma (HepG2 cells). METHODS: The optimal concentration of CRO, CGA, GEN, QUE to stimulate HepG2 cells proliferation was determined using MTT assay. HepG2 cells were pretreated with 10 µmol/L simvastatin, 1 µmol/L CRO, 30 µmol/L CGA, 10 µmol/L GEN, 10 µmol/L QUE, and CCGQ (a combination of 1 µmol/L CRO, 30 µmol/L CGA, 10 µmol/L GEN, and 10 µmol/L QUE) for 24 or 48 h. Oil red O staining and extracellular TC and TG levels were detected. The RT-PCR was used to observe on cholesterol metabolism-related gene expression. Immunocytochemistry and western-blot assayed the 3-hydroxy-3-methylglutaryl-coenzyme (HMGCR) protein expression in HepG2 cells. RESULTS: Compared to those of control, we demonstrated that treating HepG2 cells for 48 h with CCGQ resulted in a strong synergistic effect, causing a marked decrease in lipid deposition in comparison to individual treatments, in both triglyceride and total cholesterol (CRO, 5.74- and 1.49-folds; CGA, 3.38- and 1.12-folds; GEN, 4.04- and 1.44-folds; QUE, 3.36- and 1.24-folds; simvastatin, 5.49- and 1.83-folds; and CCGQ, 7.75- and 2.20-folds), and Oil red O staining assays. In addition, CCGQ treatment increased ATP-binding cassette transporter (ABCA1), cholesterol 7α-hydroxylase (CYP7A1), and AMP-activated protein kinase 2α (AMPKα2) mRNA expression, while decreasing sterol regulatory element binding protein 2 (SREBP2), and liver X receptor alpha (LXRα) mRNA expression. Notably, CCGQ was more effective in decreasing HMGCR expression than the individual treatments. CONCLUSION: The CCGQ combination has potential, both as a complementary therapy for hyperlipemia, and in preventing further obesity-related complications.


Asunto(s)
Carotenoides/farmacología , Ácido Clorogénico/farmacología , Colesterol/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Fitoquímicos/farmacología , Sinergismo Farmacológico , Células Hep G2 , Humanos , Iridoides/farmacología , Quercetina/farmacología
12.
Curr Med Imaging ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38874025

RESUMEN

BACKGROUND: Accurate segmentation of liver tumor regions in medical images is of great significance for clinical diagnosis and the planning of surgical treatments. Recent advancements in machine learning have shown that convolutional neural networks are powerful in such image processing while largely reducing human labor. However, the variable shape, fuzzy boundary, and discontinuous tumor region of liver tumors in medical images bring great challenges to accurate segmentation. The feature extraction capability of a neural network can be improved by expanding its architecture, but it inevitably demands more computing resources in training and hyperparameter tuning. METHODS: This study presents a Dynamic Context Encoder Network (DCE-Net), which incorporates multiple new modules, such as the Involution Layer, Dynamic Residual Module, Context Extraction Module, and Channel Attention Gates, for feature extraction and enhancement. RESULTS: In the experiment, we used a liver tumor CT dataset of LiTS2017 to train and test the DCE-Net for liver tumor segmentation. The experimental results showed that the four evaluation indexes of the method, precision, recall, dice, and AUC, were 0.8961, 0.9711, 0.9270, and 0.9875, respectively. Furthermore, our ablation study reported that the accuracy and training efficiency of our network were markedly superior to the networks without involution or dynamic residual modules. CONCLUSION: Therefore, the DCE-Net proposed in this study has great potential for automatic segmentation of liver lesion tumors in the clinical diagnostic environment.

13.
Knee Surg Relat Res ; 36(1): 20, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790070

RESUMEN

PURPOSE: Numerous research has reported that total knee arthroplasty (TKA) cannot reproduce axial tibial rotations of normal knees. The objective of this study was to measure the tibiofemoral articular contact motions and axial tibial rotations of TKA knees to investigate the mechanism causing the knee kinematics change of after TKAs. METHODS: Eleven patients with unilateral cruciate retaining (CR) TKA were tested for measurements of knee motion during a weight-bearing flexion from 0° to 105° using an imaging technique. The tibiofemoral contact kinematics were determined using the contact points on medial and lateral surfaces of the tibia and femoral condyles. Axial tibial rotations were calculated using the differences between the medial and lateral articulation distances on the femoral condyles and tibial surfaces at each flexion interval of 15°. RESULTS: On femoral condyles, articular contact distances are consistently longer on the medial than on the lateral sides (p < 0.05) up to 60° of flexion, corresponding to internal tibial rotations (e.g., 1.3° ± 1.0° at 15-30° interval). On tibial surfaces, the articular contact point on the medial side moved more posteriorly than on the lateral side at low flexion angles, corresponding to external tibial rotations (e.g., -1.4° ± 1.8° at 15-30° interval); and more anteriorly than on the lateral sides at mid-range flexion, corresponding to internal tibial rotations (e.g., 0.8° ± 1.7° at 45-60° interval). At higher flexion, articular motions on both femoral condyles and tibial surfaces caused minimal changes in tibial rotations. CONCLUSIONS: These results indicate that the axial tibial rotations of these TKA knees were mainly attributed to asymmetric articulations on the medial and lateral femoral condyles and tibial surfaces. The data can help understand the mechanisms causing axial tibial rotations of TKA knees and help improve implant designs for restoration of normal knee kinematics.

14.
J Neurointerv Surg ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38171611

RESUMEN

BACKGROUND: Mechanical thrombectomy has become the standard of care for acute ischemic stroke due to large vessel occlusions. Racial differences in outcomes after mechanical thrombectomy for acute ischemic stroke have not been extensively studied. We evaluate the real-world evidence for differences between races in the outcomes of thrombectomy for large vessel occlusions using the NeuroVascular Quality Initiative-Quality Outcomes Database (NVQI-QOD). METHODS: Data from the NVQI-QOD acute ischemic stroke registry were analyzed and compared for racial differences in outcomes after mechanical thrombectomy in 4507 patients from 28 US centers (17 states) between January 2014 and April 2021. Race was dichotomized into non-Hispanic White (NHW, n=3649) and non-Hispanic Black (NHB, n=858). We performed 1:1 propensity score matching resulting in a subsample of matched groups (n=761 each for NHB and NHW) to compare study endpoints using Welch's two-sided t-tests and Χ2 test for continuous and categorical outcomes, respectively. RESULTS: Prior to matching, NHW and NHB patients significantly differed in age, comorbidities, medication use, smoking status, and presenting stroke severity. No significant difference in functional outcomes or mortality, at discharge or follow-up, were revealed. NHB patients had higher average postprocedure length of stay than NHW patients, which persisted following matching (11.2 vs 9.1 days, P=0.004). CONCLUSION: Evidence from the NVQI-QOD acute ischemic stroke registry showed that outcome metrics, such as modified Rankin Scale score and mortality, did not differ significantly between racial groups; however, disparity between NHW and NHB patients in postprocedure length of stay following mechanical thrombectomy was revealed.

15.
J Imaging Inform Med ; 37(1): 134-144, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343209

RESUMEN

Catheter Digital Subtraction Angiography (DSA) is markedly degraded by all voluntary, respiratory, or cardiac motion artifact that occurs during the exam acquisition. Prior efforts directed toward improving DSA images with machine learning have focused on extracting vessels from individual, isolated 2D angiographic frames. In this work, we introduce improved 2D + t deep learning models that leverage the rich temporal information in angiographic timeseries. A total of 516 cerebral angiograms were collected with 8784 individual series. We utilized feature-based computer vision algorithms to separate the database into "motionless" and "motion-degraded" subsets. Motion measured from the "motion degraded" category was then used to create a realistic, but synthetic, motion-augmented dataset suitable for training 2D U-Net, 3D U-Net, SegResNet, and UNETR models. Quantitative results on a hold-out test set demonstrate that the 3D U-Net outperforms competing 2D U-Net architectures, with substantially reduced motion artifacts when compared to DSA. In comparison to single-frame 2D U-Net, the 3D U-Net utilizing 16 input frames achieves a reduced RMSE (35.77 ± 15.02 vs 23.14 ± 9.56, p < 0.0001; mean ± std dev) and an improved Multi-Scale SSIM (0.86 ± 0.08 vs 0.93 ± 0.05, p < 0.0001). The 3D U-Net also performs favorably in comparison to alternative convolutional and transformer-based architectures (U-Net RMSE 23.20 ± 7.55 vs SegResNet 23.99 ± 7.81, p < 0.0001, and UNETR 25.42 ± 7.79, p < 0.0001, mean ± std dev). These results demonstrate that multi-frame temporal information can boost performance of motion-resistant Background Subtraction Deep Learning algorithms, and we have presented a neuroangiography domain-specific synthetic affine motion augmentation pipeline that can be utilized to generate suitable datasets for supervised training of 3D (2d + t) architectures.

16.
Math Biosci Eng ; 20(5): 7784-7801, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-37161172

RESUMEN

Medical image segmentation of the liver is an important prerequisite for clinical diagnosis and evaluation of liver cancer. For automatic liver segmentation from Computed Tomography (CT) images, we proposed a Multi-scale Feature Extraction and Enhancement U-Net (mfeeU-Net), incorporating Res2Net blocks, Squeeze-and-Excitation (SE) blocks, and Edge Attention (EA) blocks. The Res2Net blocks which are conducive to extracting multi-scale features of the liver were used as the backbone of the encoder, while the SE blocks were also added to the encoder to enhance channel information. The EA blocks were introduced to skip connections between the encoder and the decoder, to facilitate the detection of blurred liver edges where the intensities of nearby organs are close to the liver. The proposed mfeeU-Net was trained and evaluated using a publicly available CT dataset of LiTS2017. The average dice similarity coefficient, intersection-over-union ratio, and sensitivity of the mfeeU-Net for liver segmentation were 95.32%, 91.67%, and 95.53%, respectively, and all these metrics were better than those of U-Net, Res-U-Net, and Attention U-Net. The experimental results demonstrate that the mfeeU-Net can compete with and even outperform recently proposed convolutional neural networks and effectively overcome challenges, such as discontinuous liver regions and fuzzy liver boundaries.


Asunto(s)
Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X
17.
Ann Biomed Eng ; 51(10): 2237-2244, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37261589

RESUMEN

This study aimed to develop and validate a novel flexion axis concept by calculating the points on femoral condyles that could maintain constant heights during knee flexion. Twenty-two knees of 22 healthy subjects were investigated when performing a weightbearing single leg lunge. The knee positions were captured using a validated dual fluoroscopic image system. The points on sagittal planes of the femoral condyles that had minimal changes in heights from the tibial plane along the flexion path were calculated. It was found that the points do formulate a medial-lateral flexion axis that was defined as the iso-height axis (IHA). The six degrees of freedom (6DOF) kinematics data calculated using the IHA were compared with those calculated using the conventional transepicondylar axis and geometrical center axis. The IHA measured minimal changes in proximal-distal translations and varus-valgus rotations along the flexion path, indicating that the IHA may have interesting clinical implications. Therefore, identifying the IHA could provide an alternative physiological reference for improvement of contemporary knee surgeries, such as ligament reconstruction and knee replacement surgeries that are aimed to reproduce normal knee kinematics and medial/lateral soft tissue tensions during knee flexion.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Articulación de la Rodilla , Humanos , Articulación de la Rodilla/fisiología , Artroplastia de Reemplazo de Rodilla/métodos , Fémur/fisiología , Tibia/fisiología , Rango del Movimiento Articular , Soporte de Peso/fisiología , Fenómenos Biomecánicos
18.
J Orthop Surg Res ; 18(1): 938, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062436

RESUMEN

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is often accompanied by osteopenia and osteoporosis, which can cause serious complications. The aim of this study was to determine the specific bone mineral density (BMD) of each vertebral body in patients with AIS using biomechanical finite element modeling based on three-dimensional (3D) reconstruction. METHODS: This retrospective study involved 56 patients with AIS. Computed tomography (CT) and radiography were performed. Spinal vertebrae were segmented from the spinal CT images of patients with AIS to reconstruct 3D vertebral models. The vertebral models were meshed into tetrahedral finite elements to assess the BMD. RESULTS: The mean main curve Cobb angle was 88.6 ± 36.7°, and the mean kyphosis angle was 36.8 ± 31.5°. The mean BMD of the global spine was 0.83 ± 0.15 g/cm2. The highest BMD was measured on the concave side of the apex (0.98 ± 0.16 g/cm2). Apical vertebral BMD was negatively correlated with age and height (r = - 0.490, p = 0.009 and r = - 0.478, p = 0.043, respectively). There were no significant differences in BMD values between the concave and convex sides (p > 0.05). CONCLUSIONS: The 3D finite element modeling of BMD in patients with AIS is a reliable and accurate BMD measurement method. Using this method, the overall BMD of patients with AIS was shown to gradually decrease from the top to the bottom of the spine. Our findings provide valuable insights for surgical planning, choice of screw trajectories, and additional biomechanical analyzes using finite element models in the context of scoliosis.


Asunto(s)
Cifosis , Escoliosis , Humanos , Adolescente , Escoliosis/diagnóstico por imagen , Escoliosis/cirugía , Densidad Ósea , Estudios Retrospectivos , Análisis de Elementos Finitos , Vértebras Torácicas/diagnóstico por imagen , Vértebras Torácicas/cirugía
19.
J Biomech ; 131: 110906, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34923296

RESUMEN

Femoral condyle motion of the knee is generally reported using a morphological trans-epicondyle axis (TEA) or geometric center axis (GCA) in the investigation of the knee kinematics. Axial rotation of the femur is recognized as a characteristic motion of the knee during flexion, but is controversial in the literature. This study investigated the biomechanical factors that could be associated to the axial rotations of the femur using both physiological and morphological measurement methods. Twenty healthy knees were investigated during a weightbearing flexion from 0° to 120° at a 15° increment using an imaging technique. A 3D model was constructed for each knee using MR images. Tibiofemoral cartilage contact points were determined at each flexion position to represent physiological knee motion. The contact distance on each condyle was measured between consecutive contact points. The TEA and GCA were used to measure morphological anteroposterior translations of the femoral condyles. The differences between the medial and lateral condyle motions were used to calculate the physiological and morphological axial rotations of the femur. Both the physiological and morphological methods measured external rotations of the femur at low flexion range (0°-45°) and minimal rotations at higher flexion angles. However, the morphological method measured larger posterior translations of the lateral femoral condyle than the medial condyle (p < 0.05), implying a medial pivoting rotation; in contrast, the physiological method measured larger contact distances on the medial condyle than on the lateral condyle (p < 0.05), implying a lateral pivoting rotation. These data could provide useful references for future investigation of kinematics of the knee before and after surgical repair, such as using total knee arthroplasty.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Articulación de la Rodilla , Fenómenos Biomecánicos , Epífisis , Fémur/diagnóstico por imagen , Fémur/cirugía , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular , Rotación
20.
Comput Biol Med ; 138: 104923, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34638020

RESUMEN

Registration of 3D anatomic structures to their 2D dual fluoroscopic X-ray images is a widely used motion tracking technique. However, deep learning implementation is often impeded by a paucity of medical images and ground truths. In this study, we proposed a transfer learning strategy for 3D-to-2D registration using deep neural networks trained from an artificial dataset. Digitally reconstructed radiographs (DRRs) and radiographic skull landmarks were automatically created from craniocervical CT data of a female subject. They were used to train a residual network (ResNet) for landmark detection and a cycle generative adversarial network (GAN) to eliminate the style difference between DRRs and actual X-rays. Landmarks on the X-rays experiencing GAN style translation were detected by the ResNet, and were used in triangulation optimization for 3D-to-2D registration of the skull in actual dual-fluoroscope images (with a non-orthogonal setup, point X-ray sources, image distortions, and partially captured skull regions). The registration accuracy was evaluated in multiple scenarios of craniocervical motions. In walking, learning-based registration for the skull had angular/position errors of 3.9 ± 2.1°/4.6 ± 2.2 mm. However, the accuracy was lower during functional neck activity, due to overly small skull regions imaged on the dual fluoroscopic images at end-range positions. The methodology to strategically augment artificial training data can tackle the complicated skull registration scenario, and has potentials to extend to widespread registration scenarios.


Asunto(s)
Imagenología Tridimensional , Tomografía Computarizada por Rayos X , Algoritmos , Femenino , Humanos , Aprendizaje Automático , Cráneo/diagnóstico por imagen , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA