Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 103(2): 973-980, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30417309

RESUMEN

Quantum dots (QDs) are recognized as the excellent fluorescence and photochemical materials to be applied in bioimaging, biomedical, and solar cell fields. Biosynthesized QDs (bio-QDs) have attracted attention due to their simple, eco-friendly, and excellent biocompatible traits. Moreover, bio-QDs could not be replaced by chemically fabricated QDs in many fields. Bio-QDs synthesized by different microorganisms have diverse characteristics. In this work, the biosynthesis of QDs by Tetrahymena pyriformis, a typical protozoa in aquatic environments, was achieved for the first time. The synthesized materials by T. pyriformis emitted yellow fluorescence and had an average diameter of 8.27 ± 0.77 nm. Spectral characterization results demonstrated that the synthesized QDs were CdS1-XSeX. Meanwhile, the fluorescence intensities of the synthesized bio-QDs showed a linear relationship with Cd2+ dosage ranging from 20 to 80 µM. The fluorescence enhancement of the synthesized QDs was highly selective to Cd2+ compared to other metal ions. The bio-QDs were demonstrated to have a great potential to be applied for Cd2+ detection. This work provides valuable information about the transformation of heavy metal ions in protozoan and is useful to accelerate the applications of the synthesized QDs.


Asunto(s)
Cadmio/análisis , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Puntos Cuánticos/metabolismo , Tetrahymena pyriformis/metabolismo , Cationes Bivalentes/análisis , Fluorescencia , Tecnología Química Verde/métodos , Metales Pesados/análisis , Puntos Cuánticos/química , Análisis Espectral , Tetrahymena pyriformis/genética
2.
J Am Chem Soc ; 139(35): 12149-12152, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28825808

RESUMEN

Biofabrication of nanomaterials is currently constrained by a low production efficiency and poor controllability on product quality compared to chemical synthetic routes. In this work, we show an attractive new biosynthesis system to break these limitations. A directed production of selenium-containing nanoparticles in Shewanella oneidensis MR-1 cells, with fine-tuned composition and subcellular synthetic location, was achieved by modifying the extracellular electron transfer chain. By taking advantage of its untapped intracellular detoxification and synthetic power, we obtained high-purity, uniform-sized cadmium selenide nanoparticles in the cytoplasm, with the production rates and fluorescent intensities far exceeding the state-of-the-art biosystems. These findings may fundamentally change our perception of nanomaterial biosynthesis process and lead to the development of fine-controllable nanoparticles biosynthesis technologies.

3.
ACS Nano ; 13(5): 5841-5851, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30969107

RESUMEN

Biosynthesis offers opportunities for cost-effective and sustainable production of semiconductor quantum dots (QDs), but is currently restricted by poor controllability on the synthesis process, resulting from limited knowledge on the assembly mechanisms and the lack of effective control strategies. In this work, we provide molecular-level insights into the formation mechanism of biogenic QDs (Bio-QDs) and its connection with the cellular substrate metabolism in Escherichia coli. Strengthening the substrate metabolism for producing more reducing power was found to stimulate the production of several reduced thiol-containing proteins (including glutaredoxin and thioredoxin) that play key roles in Bio-QDs assembly. This effectively diverted the transformation route of the selenium (Se) and cadmium (Cd) metabolic from Cd3(PO4)2 formation to CdS xSe1- x QDs assembly, yielding fine-sized (2.0 ± 0.4 nm), high-quality Bio-QDs with quantum yield (5.2%) and fluorescence lifetime (99.19 ns) far exceeding the existing counterparts. The underlying mechanisms of Bio-QDs crystallization and development were elucidated by density functional theory calculations and molecular dynamics simulation. The resulting Bio-QDs were successfully used for bioimaging of cancer cells and tumor tissue of mice without extra modification. Our work provides fundamental knowledge on the Bio-QDs assembly mechanisms and proposes an effective, facile regulation strategy, which may inspire advances in controlled synthesis and practical applications of Bio-QDs as well as other bionanomaterials.


Asunto(s)
Cadmio/química , Imagen Molecular/métodos , Puntos Cuánticos/química , Selenio/química , Animales , Cadmio/farmacología , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Fluorescencia , Glutarredoxinas/química , Glutarredoxinas/genética , Humanos , Ratones , Microscopía Fluorescente/métodos , Puntos Cuánticos/metabolismo , Selenio/farmacología , Especificidad por Sustrato/efectos de los fármacos , Tiorredoxinas/química , Tiorredoxinas/genética
4.
Chemosphere ; 211: 345-351, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30077930

RESUMEN

Ciprofloxacin (CIP), as an extensively used antibiotic, has been widely detected at a high level in the environment and has raised environmental pollution concerns. Thus, efficient and cost-effective methods for CIP degradation are highly desired. Biologically produced manganese oxides (BioMnOx) offer a promising perspective for CIP degradation because of their catalytic reactivity and cost-effectiveness. However, the release of Mn(II) from BioMnOx prevents the further oxidation of pollutants. As a consequence, continuous CIP degradation by BioMnOx is not feasible. In this work, a manganese redox cycling system driven by Pseudomonas putida MnB-1 was constructed for continuous degradation of CIP. In such a system CIP was oxidized continuously and rapidly by re-oxidizing the formed Mn(II) to regenerate reactive BioMnOx, which also protected the strain from CIP toxicity. CIP was degraded through N-dealkylation passway. No significant loss of BioMnOx reactivity was observed in three-cycle CIP degradation process, suggesting the stability of this system. An overlooked intracellular BioMnOx, which was involved in CIP degradation, was discovered in P. putida MnB-1. Moreover, the important role of Mn(III) in facilitating CIP removal in this system was also identified. This work provides useful information to better understand the degradation of antibiotic compounds mediated by microbes in environments.


Asunto(s)
Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Manganeso/química , Manganeso/metabolismo , Pseudomonas putida/metabolismo , Oxidación-Reducción
5.
Sci Rep ; 7(1): 2048, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28515441

RESUMEN

Organisms served as factories of bio-assembly of nanoparticles attracted a lot of attentions due to the safe, economic and environmental-benignity traits, especially the fabrication of the super fluorescence properties quantum dots (QDs). However, information about the developmental dynamics of QDs in living organisms is still lacking. In this work, we synthesized cadmium-selenium (CdSe) QDs in Candida utilis WSH02-08, and then tracked and quantitatively characterized the developmental dynamics (photoactivation, photostable and photobleaching processes) of bio-QDs by translating fluorescence microscopy movies into visual quantitative curve. These findings shed light on the fluorescence properties of the bio-assembled QDs and are expected to accelerate the applications of the synthesized QDs in vivo. It provided a new way to screen bio-QDs and monitor the quality of QDs in vivo.


Asunto(s)
Compuestos de Cadmio/metabolismo , Candida/metabolismo , Puntos Cuánticos , Compuestos de Selenio/metabolismo , Compuestos de Cadmio/química , Fluorescencia , Microscopía Fluorescente , Puntos Cuánticos/química , Puntos Cuánticos/ultraestructura , Compuestos de Selenio/química , Espectrometría de Fluorescencia
6.
Enzyme Microb Technol ; 95: 185-191, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27866614

RESUMEN

Nano-selenium has a great potential to be used in chemical, biological, medical and environmental fields. Biological methods for nano-selenium synthesis have attracted wide interests, because they can be operated at ambient temperature and pressure without complicated equipments. In this work, a protozoa, Tetrahymena thermophila (T. thermophila) SB210, was used to in vivo synthesize nano-selenium. The biosynthesized nano-selenium was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. The synthesized amorphous spherical selenium nanoparticles had diameters of 50-500nm with the coexistence of irregular nano-selenium. The expressions of glutathione (GSH) synthesis related gene glutathione synthase, cysteine-rich protein metallothionein related gene metallothionein-1 and [2Fe-2S] cluster-binding protein related gene were up-regulated in the nano-selenium producing group. Also, the subsequent GSH detection and in vitro synthesis experimental results suggest the three proteins were likely to be involved in the nano-selenium synthesis process.


Asunto(s)
Nanopartículas del Metal/química , Selenio/química , Tetrahymena thermophila/metabolismo , Biotecnología , Genes Protozoarios , Glutatión/metabolismo , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Tecnología Química Verde , Nanopartículas del Metal/ultraestructura , Nanotecnología , Oxidación-Reducción , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Ácido Selenioso/metabolismo , Tetrahymena thermophila/genética
7.
Enzyme Microb Technol ; 95: 230-235, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27866620

RESUMEN

Photothermal therapy (PTT) is a minimally invasive and effective cancer treatment method and has a great potential for innovating the conventional chemotherapy approaches. Copper sulfide (CuS) exhibits photostability, low cost, and high absorption in near infrared region, and is recognized as an ideal candidate for PTT. However, CuS, as a photothermal agent, is usually synthesized with traditional chemical approaches, which require high temperature, additional stabilization and hydrophilic modification. Herein, we report, for the first time, the preparation of CuS nanoparticles as a photothermal agent by a dissimilatory metal reducing bacterium Shewanella. oneidensis MR-1. The prepared nanoparticles are homogenously shaped, hydrophilic, small-sized (∼5nm) and highly stable. Furthermore, the biosynthesized CuS nanoparticles display a high photothermal conversion efficiency of 27.2% because of their strong absorption at 1100nm. The CuS nanoparticles could be effectively used as a PTT agent under the irradiation of 1064nm. This work provides a simple, eco-friendly and cost-effective approach for fabricating PTT agents.


Asunto(s)
Cobre/química , Cobre/metabolismo , Nanopartículas del Metal/química , Shewanella/metabolismo , Sulfuros/química , Sulfuros/metabolismo , Línea Celular Tumoral , Cobre/farmacología , Tecnología Química Verde , Humanos , Hipertermia Inducida , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/ultraestructura , Procesos Fotoquímicos , Sulfuros/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA