Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(7): 1666-1684.e26, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38490194

RESUMEN

Diminished hepatocyte regeneration is a key feature of acute and chronic liver diseases and after extended liver resections, resulting in the inability to maintain or restore a sufficient functional liver mass. Therapies to restore hepatocyte regeneration are lacking, making liver transplantation the only curative option for end-stage liver disease. Here, we report on the structure-based development and characterization (nuclear magnetic resonance [NMR] spectroscopy) of first-in-class small molecule inhibitors of the dual-specificity kinase MKK4 (MKK4i). MKK4i increased liver regeneration upon hepatectomy in murine and porcine models, allowed for survival of pigs in a lethal 85% hepatectomy model, and showed antisteatotic and antifibrotic effects in liver disease mouse models. A first-in-human phase I trial (European Union Drug Regulating Authorities Clinical Trials [EudraCT] 2021-000193-28) with the clinical candidate HRX215 was conducted and revealed excellent safety and pharmacokinetics. Clinical trials to probe HRX215 for prevention/treatment of liver failure after extensive oncological liver resections or after transplantation of small grafts are warranted.


Asunto(s)
Inhibidores Enzimáticos , Fallo Hepático , MAP Quinasa Quinasa 4 , Animales , Humanos , Ratones , Hepatectomía/métodos , Hepatocitos , Hígado , Hepatopatías/tratamiento farmacológico , Fallo Hepático/tratamiento farmacológico , Fallo Hepático/prevención & control , Regeneración Hepática , Porcinos , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico
2.
Proc Natl Acad Sci U S A ; 121(5): e2315362121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261614

RESUMEN

Carbon-based single-atom catalysts, a promising candidate in electrocatalysis, offer insights into electron-donating effects of metal center on adjacent atoms. Herein, we present a practical strategy to rationally design a model catalyst with a single zinc (Zn) atom coordinated with nitrogen and sulfur atoms in a multilevel carbon matrix. The Zn site exhibits an atomic interface configuration of ZnN4S1, where Zn's electron injection effect enables thermal-neutral hydrogen adsorption on neighboring atoms, pushing the activity boundaries of carbon electrocatalysts toward electrochemical hydrogen evolution to an unprecedented level. Experimental and theoretical analyses confirm the low-barrier Volmer-Tafel mechanism of proton reduction, while the multishell hollow structures facilitate the hydrogen evolution even at high current intensities. This work provides insights for understanding the actual active species during hydrogen evolution reaction and paves the way for designing high-performance electrocatalysts.

3.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38684007

RESUMEN

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Asunto(s)
Anfibios , Biodiversidad , Filogenia , Animales , Anfibios/clasificación , China , Conservación de los Recursos Naturales
4.
Hum Mol Genet ; 33(11): 958-968, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38453145

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of the pancreatic ß-cells. Genome-wide association (GWAS) and fine mapping studies have been conducted mainly in European ancestry (EUR) populations. We performed a multi-ancestry GWAS to identify SNPs and HLA alleles associated with T1D risk and age at onset. EUR families (N = 3223), and unrelated individuals of African (AFR, N = 891) and admixed (Hispanic/Latino) ancestry (AMR, N = 308) were genotyped using the Illumina HumanCoreExome BeadArray, with imputation to the TOPMed reference panel. The Multi-Ethnic HLA reference panel was utilized to impute HLA alleles and amino acid residues. Logistic mixed models (T1D risk) and frailty models (age at onset) were used for analysis. In GWAS meta-analysis, seven loci were associated with T1D risk at genome-wide significance: PTPN22, HLA-DQA1, IL2RA, RNLS, INS, IKZF4-RPS26-ERBB3, and SH2B3, with four associated with T1D age at onset (PTPN22, HLA-DQB1, INS, and ERBB3). AFR and AMR meta-analysis revealed NRP1 as associated with T1D risk and age at onset, although NRP1 variants were not associated in EUR ancestry. In contrast, the PTPN22 variant was significantly associated with risk only in EUR ancestry. HLA alleles and haplotypes most significantly associated with T1D risk in AFR and AMR ancestry differed from that seen in EUR ancestry; in addition, the HLA-DRB1*08:02-DQA1*04:01-DQB1*04:02 haplotype was 'protective' in AMR while HLA-DRB1*08:01-DQA1*04:01-DQB1*04:02 haplotype was 'risk' in EUR ancestry, differing only at HLA-DRB1*08. These results suggest that much larger sample sizes in non-EUR populations are required to capture novel loci associated with T1D risk.


Asunto(s)
Diabetes Mellitus Tipo 1 , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Diabetes Mellitus Tipo 1/genética , Masculino , Femenino , Población Blanca/genética , Edad de Inicio , Alelos , Cadenas alfa de HLA-DQ/genética , Población Negra/genética , Niño , Hispánicos o Latinos/genética , Antígenos HLA/genética , Adolescente
5.
Nucleic Acids Res ; 52(3): 1471-1482, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38197271

RESUMEN

Transcription activation is a crucial step of regulation during transcription initiation and a classic check point in response to different stimuli and stress factors. The Escherichia coli NarL is a nitrate-responsive global transcription factor that controls the expression of nearly 100 genes. However, the molecular mechanism of NarL-mediated transcription activation is not well defined. Here we present a cryo-EM structure of NarL-dependent transcription activation complex (TAC) assembled on the yeaR promoter at 3.2 Å resolution. Our structure shows that the NarL dimer binds at the -43.5 site of the promoter DNA with its C-terminal domain (CTD) not only binding to the DNA but also making interactions with RNA polymerase subunit alpha CTD (αCTD). The key role of these NarL-mediated interactions in transcription activation was further confirmed by in vivo and in vitro transcription assays. Additionally, the NarL dimer binds DNA in a different plane from that observed in the structure of class II TACs. Unlike the canonical class II activation mechanism, NarL does not interact with σ4, while RNAP αCTD is bound to DNA on the opposite side of NarL. Our findings provide a structural basis for detailed mechanistic understanding of NarL-dependent transcription activation on yeaR promoter and reveal a potentially novel mechanism of transcription activation.


Asunto(s)
Proteínas de Escherichia coli , Nitratos , Activación Transcripcional , Proteínas Bacterianas/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitratos/metabolismo
7.
J Am Chem Soc ; 146(15): 10806-10811, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572914

RESUMEN

The development of efficient catalysts for the hydrogenation of CO2 to methanol using "green" H2 is foreseen to be a key step to close the carbon cycle. In this study, we show that small and narrowly distributed alloyed PtGa nanoparticles supported on silica, prepared via a surface organometallic chemistry (SOMC) approach, display notable activity for the hydrogenation of CO2 to methanol, reaching a 7.2 molCH3OH h-1 molPt-1 methanol formation rate with a 54% intrinsic CH3OH selectivity. This reactivity sharply contrasts with what is expected for Pt, which favors the reverse water gas shift reaction, albeit with poor activity (2.6 molCO2 h-1 molPt-1). In situ XAS studies indicate that ca. 50% of Ga is reduced to Ga0 yielding alloyed PtGa nanoparticles, while the remaining 50% persist as isolated GaIII sites. The PtGa catalyst slightly dealloys under CO2 hydrogenation conditions and displays redox dynamics with PtGa-GaOx interfaces responsible for promoting both the CO2 hydrogenation activity and methanol selectivity. Further tailoring the catalyst interface by using a carbon support in place of silica enables to improve the methanol formation rate by a factor of ∼5.

8.
J Am Chem Soc ; 146(6): 3635-3639, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38318801

RESUMEN

A biscyclen molecular cabin, synthesized by connecting two cyclen macrocycles with four linkages, entraps a Li+···H2O···Li+ trimer with a water molecule clamped by two Li+ ions. This configuration results in strongly polarized water, characterized by a water proton resonance shift of up to 10.00 ppm. The arrangement facilitates unprecedented O-centered chalcogen bonds between the lone pairs of pyridinyl nitrogen atoms and polarized water oxygen, as confirmed by X-ray crystallography, NMR spectroscopy, and theoretical calculations. Further observation of O-centered chalcogen bonding in a H2O·(LiCl)2 cluster suggests its widespread presence in hydrated salt systems.

9.
Lab Invest ; 104(9): 102107, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964504

RESUMEN

DNA mismatch repair gene MutL homolog-1 (MLH1) has divergent effects in many cancers; however, its impact on the metastasis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. In this study, MLH1 stably overexpressed (OE) and knockdowned (KD) sublines were established. Wound healing and transwell assays were used to evaluate cell migration/invasion. In vivo metastasis was investigated in orthotopic implantation models (severe combined immunodeficiency mice). RT-qPCR and western blotting were adopted to show gene/protein expression. MLH1 downstream genes were screened by transcriptome sequencing. Tissue microarray-based immunohistochemistry was applied to determine protein expression in human specimens. In successfully generated sublines, OE cells presented weaker migration/invasion abilities, compared with controls, whereas in KD cells, these abilities were significantly stronger. The metastasis-inhibitory effect of MLH1 was also observed in mice. Mechanistically, G protein-coupled receptor, family C, group 5, member C (GPRC5C) was a key downstream gene of MLH1 in PDAC cells. Subsequently, transient GPRC5C silencing effectively inhibited cell migration/invasion and remarkably reversed the proinvasive effect of MLH1 knockdown in KD cells. In animal models and human PDAC tissues, tumoral GPRC5C expression, negatively associated with MLH1 expressions, was positively correlated with histologic grade, vessel invasion, and poor cancer-specific survival. In conclusion, MLH1 inhibits the metastatic potential of PDAC via downregulation of GPRC5C.

10.
Breast Cancer Res ; 26(1): 9, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212845

RESUMEN

PURPOSE: This study aimed to evaluate the prognostic role of the baseline neutrophil/lymphocyte ratio (NLR) in HER2-positive metastatic breast cancer (MBC) patients treated with trastuzumab/pertuzumab. EXPERIMENTAL DESIGN: Data from 780 patients from the CLEOPATRA trial and 248 local patients were collected. Patients were divided into the low and high NLR subgroups by the NLR cutoff value. Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) methods were used to control bias. Associations between the NLR and progression-free survival (PFS) and overall survival (OS) were analyzed. RESULTS: The baseline characteristics of the subgroups were well balanced after PSM and IPTW. A low baseline NLR was associated with better PFS and OS in the trastuzumab and docetaxel (TH) group in the unadjusted, PSM and IPTW models. After IPTW, a low NLR, versus a high NLR, was associated with improved PFS (HR 1.35, 95% CI 1.07-1.70, P = 0.012) and OS (HR 1.47, 95% CI 1.12-1.94, P = 0.006) in the TH group. In patients undergoing treatment with trastuzumab and pertuzumab and docetaxel (THP), a low baseline NLR was also correlated with better PFS but not OS across the three models. After IPTW, a low NLR was associated with better PFS (HR 1.52, 95% CI 1.20-1.93, P = 0.001) than a high NLR in the THP group. Multivariate analyses showed that a low baseline NLR was a predictor for PFS and OS in the TH group and for PFS in the THP group in all three models. In the real-world setting, a low baseline NLR was a predictor of better PFS among patients treated with docetaxel plus trastuzumab without or with pertuzumab in the multivariate model (P = 0.015 and 0.008, respectively). CONCLUSIONS: A low baseline NLR is associated with better survival outcomes among HER2-positive MBC patients receiving docetaxel plus trastuzumab/pertuzumab as first-line therapy.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/patología , Docetaxel , Linfocitos/patología , Neutrófilos/patología , Pronóstico , Receptor ErbB-2 , Trastuzumab/uso terapéutico
11.
PLoS Med ; 21(6): e1004388, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843150

RESUMEN

BACKGROUND: Frozen embryo transfer (FET) has become a widely employed assisted reproductive technology technique. There have historically been concerns regarding the long-term metabolic safety of FET technology in offspring due to pregnancy-induced hypertension and large for gestational age, both of which are well-recognized factors for metabolic dysfunction of children. Therefore, we aimed to compare the metabolic profiles of children born after frozen versus fresh embryo transfer at 2 to 5 years of age. METHODS AND FINDINGS: This was a prospective cohort study. Using data from the "Assisted Reproductive Technology borned KIDs (ARTKID)," a birth cohort of offspring born from assisted reproductive technology at the Institute of Women, Children and Reproductive Health, Shandong University, China. We included 4,246 singletons born after FET (n = 2,181) and fresh embryo transfer (n = 2,065) enrolled between 2008 and 2019 and assessed the glucose and lipid variables until the age of 2 to 5 years. During a mean follow-up of 3.6 years, no significant differences were observed in fasting blood glucose, fasting insulin, Homeostatic Model Assessment of Insulin Resistance Index, total cholesterol, triglycerides, low-density lipoprotein-cholesterol, and high-density lipoprotein-cholesterol levels between offspring conceived by fresh and frozen embryo transfer in the crude model and adjusted model (adjusted for parental age, parental body mass index, parental education level, paternal smoking, parity, offspring age and sex). These results remained consistent across subgroup analyses considering offspring age, the stage of embryo transfer, and the mode of fertilization. Results from sensitivity analysis on children matched for age within the cohort remains the same. The main limitation of our study is the young age of the offspring. CONCLUSIONS: In this study, the impact of FET on glucose and lipid profiles during early childhood was comparable to fresh embryo transfer. Long-term studies are needed to evaluate the metabolic health of offspring born after FET.


Asunto(s)
Criopreservación , Transferencia de Embrión , Humanos , Transferencia de Embrión/métodos , Femenino , Preescolar , Masculino , China/epidemiología , Estudios Prospectivos , Metaboloma , Embarazo , Glucemia/metabolismo , Adulto , Estudios de Cohortes , Pueblos del Este de Asia
12.
Clin Immunol ; 263: 110223, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636890

RESUMEN

Idiopathic severe aplastic anemia (SAA) is a disease of bone marrow failure caused by T-cell-induced destruction of hematopoietic stem and progenitor cells (HSPCs), however the mechanism remains unclear. We performed single-cell RNA sequencing of PBMCs and BMMCs from SAA patients and healthy donors and identified a CD8+ T cell subset with a tissue residency phenotype (Trm) in bone marrow that exhibit high IFN-γ and FasL expression and have a higher ability to induce apoptosis in HSPCs in vitro through FasL expression. CD8+ Trm cells were induced by IL-15 presented by IL-15Rα on monocytes, especially CD16+ monocytes, which were increased in SAA patients. CD16+ monocytes contributed to IL-15-induced CD38+CXCR6+ pre-Trm differentiation into CD8+ Trm cells, which can be inhibited by the CD38 inhibitor 78c. Our results demonstrate that IL-15-induced CD8+ Trm cells are pathogenic cells that mediate HSPC destruction in SAA patients and are therapeutic targets for future treatments.


Asunto(s)
Anemia Aplásica , Linfocitos T CD8-positivos , Proteínas Ligadas a GPI , Células Madre Hematopoyéticas , Interleucina-15 , Monocitos , Receptores de IgG , Humanos , Anemia Aplásica/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Interleucina-15/farmacología , Interleucina-15/inmunología , Receptores de IgG/metabolismo , Receptores de IgG/inmunología , Monocitos/inmunología , Monocitos/efectos de los fármacos , Femenino , Masculino , Adulto , Células Madre Hematopoyéticas/inmunología , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/inmunología , Persona de Mediana Edad , Proteína Ligando Fas/metabolismo , Proteína Ligando Fas/inmunología , Adulto Joven , Adolescente , Interferón gamma/inmunología , Interferón gamma/metabolismo , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-15/inmunología , Apoptosis/efectos de los fármacos , Diferenciación Celular/inmunología
13.
Clin Immunol ; 264: 110234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740111

RESUMEN

BACKGROUND: Natural anti-cytokine autoantibodies can regulate homeostasis of infectious and inflammatory diseases. The anti-cytokine autoantibody profile and relevance to the pathogenesis of asthma are unknown. We aim to identify key anti-cytokine autoantibodies in asthma patients, and reveal their immunological function and clinical significance. METHODS: A Luciferase Immunoprecipitation System was used to screen serum autoantibodies against 11 key cytokines in patients with allergic asthma and healthy donors. The antigen-specificity, immunomodulatory functions and clinical significance of anti-cytokine autoantibodies were determined by ELISA, qPCR, neutralization assays and statistical analysis, respectively. Potential conditions for autoantibody induction were revealed by in vitro immunization. RESULTS: Of 11 cytokines tested, only anti-IL-33 autoantibody was significantly increased in asthma, compare to healthy controls, and the proportion positive was higher in patients with mild-to-moderate than severe allergic asthma. In allergic asthma patients, the anti-IL-33 autoantibody level correlated negatively with serum concentration of pathogenic cytokines (e.g., IL-4, IL-13, IL-25 and IL-33), IgE, and blood eosinophil count, but positively with mid-expiratory flow FEF25-75%. The autoantibodies were predominantly IgG isotype, polyclonal and could neutralize IL-33-induced pathogenic responses in vitro and in vivo. The induction of the anti-IL-33 autoantibody in blood B-cells in vitro required peptide IL-33 antigen along with a stimulation cocktail of TLR9 agonist and cytokines IL-2, IL-4 or IL-21. CONCLUSIONS: Serum natural anti-IL-33 autoantibodies are selectively induced in some asthma patients. They ameliorate key asthma inflammatory responses, and may improve lung function of allergic asthma.


Asunto(s)
Asma , Autoanticuerpos , Interleucina-33 , Humanos , Asma/inmunología , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Interleucina-33/inmunología , Femenino , Adulto , Masculino , Persona de Mediana Edad , Animales , Anticuerpos Neutralizantes/inmunología , Citocinas/inmunología , Citocinas/sangre , Ratones , Adulto Joven , Inmunoglobulina E/inmunología , Inmunoglobulina E/sangre , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/agonistas , Índice de Severidad de la Enfermedad , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre
14.
Ann Surg ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258598

RESUMEN

OBJECTIVE: To investigate the impact of carotid interventions on patients' mental condition in patients with carotid stenosis. SUMMARY BACKGROUND DATA: Ongoing research highlights the impact of carotid interventions on neurocognitive function in patients with advanced carotid atherosclerosis. However, data regarding the impact of carotid revascularization on mood is scarce. METHODS: A total of 157 patients undergoing carotid revascularization were prospectively recruited. The primary outcome was depression, evaluated pre-operatively, and at 1-,6- and 12-month post-intervention using the long form of the geriatric depression scale (GDS-30) questionnaire. Other tests were also used to assess cognition at the respective timepoints. Statistical analyses were performed to assess the postoperative outcomes compared to baseline. RESULTS: Baseline depression (GDS>9) was observed in 49(31%) subjects, whereas 108(69%) patients were not depressed (GDS≤9). The average pre-operative GDS score was 15.42 ± 4.40(14.2-16.7) and 4.28 ±2.9(3.7-4.8) in the depressed and non-depressed groups, respectively. We observed a significant improvement in GDS scores within the depressed group at 1-month (P=0.002), 6-months (P=0.027), and 1-year (P<0.001) post-intervention compared to preop, whereas the non-depressed group had similar post-op GDS scores at all time points compared to baseline. Significant improvement in measures of executive function was seen in non-depressed patients at all three timepoints whereas depressed patients showed an improvement at 1-year follow-up. CONCLUSIONS: Our study highlights improvement in mood among patients with advanced carotid disease who screened positive for depression at baseline. Further studies with larger sample sizes are warranted to investigate the association between depression, carotid disease, and carotid intervention.

15.
Anal Chem ; 96(15): 5985-5991, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38557031

RESUMEN

Super-resolution fluorescence imaging is a crucial method for visualizing the dynamics of the cell membrane involved in various physiological and pathological processes. This requires bright fluorescent dyes with excellent photostability and labeling stability to enable long-term imaging. In this context, we introduce a buffering-strategy-based cyanine dye, SA-Cy5, designed to identify and label carbonic anhydrase IX (CA IX) located in the cell membrane. The unique feature of SA-Cy5 lies in its ability to overcome photobleaching. When the dye on the cell membrane undergoes photobleaching, it is rapidly replaced by an intact probe from the buffer pool outside the cell membrane. This dynamic replacement ensures that the fluorescence intensity on the cell membrane remains stable over time. Under the super-resolution structured illumination microscopy (SIM), the cell membrane can be continuously imaged for 60 min with a time resolution of 20 s. This extended imaging period allows for the observation of substructural dynamics of the cell membrane, including the growth and fusion of filamentous pseudopodia and the fusion of vesicles. Additionally, this buffering strategy introduces a novel approach to address the issue of poor photostability associated with the cyanine dyes.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Carbocianinas/química , Colorantes Fluorescentes/química , Membrana Celular
16.
Anal Chem ; 96(2): 866-875, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164718

RESUMEN

Despite extensive efforts, point-of-care testing (POCT) of protein markers with high sensitivity and specificity and at a low cost remains challenging. In this work, we developed an aptamer-CRISPR/Cas12a-regulated liquid crystal sensor (ALICS), which achieved ultrasensitive protein detection using a smartphone-coupled portable device. Specifically, a DNA probe that contained an aptamer sequence for the protein target and an activation sequence for the Cas12a-crRNA complex was prefixed on a substrate and was released in the presence of target. The activation sequence of the DNA probe then bound to the Cas12a-crRNA complex to activate the collateral cleavage reaction, producing a bright-to-dark optical change in a DNA-functionalized liquid crystal interface. The optical image was captured by a smartphone for quantification of the target concentration. For the two model proteins, SARS-CoV-2 nucleocapsid protein (N protein) and carcino-embryonic antigen (CEA), ALICS achieved detection limits of 0.4 and 20 pg/mL, respectively, which are higher than the typical sensitivity of the SARS-CoV-2 test and the clinical CEA test. In the clinical sample tests, ALICS also exhibited superior performances compared to those of the commercial ELISA and lateral flow test kits. Overall, ALICS represents an ultrasensitive and cost-effective platform for POCT, showing a great potential for pathogen detection and disease monitoring under resource-limited conditions.


Asunto(s)
Técnicas Biosensibles , Cristales Líquidos , Sistemas de Atención de Punto , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Oligonucleótidos , Sondas de ADN
17.
Anal Chem ; 96(14): 5363-5367, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38535996

RESUMEN

Proteomics of human saliva samples was achieved for the first time via biocompatible solid-phase microextraction (bio-SPME) devices. Upon introduction of a porogen to a conventional C18 coating, porous C18/polyacrylonitrile (PAN) SPME blades were able to extract peptides up to 3.0 kDa and more peptides than commercial SPME blades. Following Trypsin digestion, salivary proteomic analysis was achieved via SPME-LC-MS/MS. Seven endogenous proteins were consistently identified in all saliva samples via bio-SPME. Taking advantage of this strategy, untargeted peptidomics was applied for the comparison of saliva samples between healthy and SARS-CoV-2 positive individuals. The results showed clear peptidomic differences between the viral and healthy saliva samples. This proof-of-concept study demonstrates the potential of bio-SPME-LC-MS/MS for peptidomics and proteomics in biomedical applications.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Microextracción en Fase Sólida/métodos , Saliva/química , Proteómica , Péptidos/análisis
18.
BMC Plant Biol ; 24(1): 778, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148054

RESUMEN

BACKGROUND: The genus Hydrocotyle Tourn. ex L. is a key group for further study on the evolution of Apiales, comprising around 170 species globally. Previous studies mainly focused on separate sections and provided much information about this genus, but its infrageneric relationships are still confusing. In addition, the genetic basis of its adaptive evolution remains poorly understood. To investigate the phylogeny and evolution of the genus, we selected ten representative species covering two of three diversity distribution centers and exhibiting rich morphology diversity. Comparative plastome analysis was conducted to clarify the structural character of Hydrocotyle plastomes. Positive selection analyses were implemented to assess the evolution of the genus. Phylogenetic inferences with protein-coding sequences (CDS) of Hydrocotyle and 17 related species were also performed. RESULTS: Plastomes within Hydrocotyle were generally conservative in structure, gene order, and size. A total of 14 regions (rps16-trnK, trnQ-rps16, atpI-atpH, trnC-petN-psbM, ycf3-trnS, accD-psaI-ycf4, petA-psbJ, rps12-rpl20, rpl16 intron, rps3-rpl16 intron, rps9-rpl22, ndhF-rpl32, ndhA intron, and ycf1a) were recognized as hotspot regions within the genus, which suggested to be promising DNA barcodes for global phylogenetic analysis of Hydrocotyle. The ycf15 gene was suggested to be a protein-coding gene for Hydrocotyle species, and it could be used as a DNA barcode to identify Hydrocotyle. In phylogenetic analysis, three monophyletic clades (Clade I, II, III) were identified with evidence of rapid radiation speciation within Clade I. The selective pressure analysis detected that six CDS genes (ycf1b, matK, atpF, accD, rps14, and psbB) of Hydrocotyle species were under positive selection. Within the genus, the last four genes were conservative, suggesting a relation to the unique evolution of the genus in Apiales. Seven genes (atpE, matK, psbH, ycf1a, ycf1b, rpoA, and ycf2) were detected to be under some degree of positive selection in different taxa within the genus Hydrocotyle, indicating their role in the adaptive evolution of species. CONCLUSIONS: Our study offers new insights into the phylogeny and adaptive evolution of Hydrocotyle. The plastome sequences could significantly enhance phylogenetic resolution and provide genomic resources and potential DNA markers useful for future studies of the genus.


Asunto(s)
Filogenia , Evolución Molecular , Genoma de Plastidios , Apiaceae/genética
19.
BMC Plant Biol ; 24(1): 344, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684949

RESUMEN

BACKGROUND: Geographical factors affect the nutritional, therapeutic and commercial values of fruits. Dragon fruit (Hylocereus spp) is a popular fruit in Asia and a potential functional food with diverse pharmacological attributes. Although it is produced in various localities, the information related to the altitudinal variation of dragon fruit nutrients and active compounds is scarce. Hence, this study aimed to investigate the variations in metabolite profiles of H. polyrhizus (variety Jindu1) fruit pulps from three different altitudes of China, including Wangmo (WM, 650 m), Luodian (LD, 420 m), and Zhenning (ZN, 356 m). Jindu1 is the main cultivated pitaya variety in Guizhou province, China. RESULTS: The LC-MS (liquid chromatography-mass spectroscopy)-based widely targeted metabolic profiling identified 645 metabolites, of which flavonoids (22.64%), lipids (13.80%), phenolic acids (12.40%), amino acids and derivatives (10.39%), alkaloids (8.84%), and organic acids (8.37%) were dominant. Multivariate analyses unveiled that the metabolite profiles of the fruit differed regarding the altitude. Fruits from WM (highest altitude) were prime in quality, with higher levels of flavonoids, alkaloids, nucleotides and derivatives, amino acids and derivatives, and vitamins. Fruits from LD and ZN had the highest relative content of phenolic acids and terpenoids, respectively. We identified 69 significantly differentially accumulated metabolites across the pulps of the fruits from the three locations. KEGG analysis revealed that flavone and flavonol biosynthesis and isoflavonoid biosynthesis were the most differentially regulated. It was noteworthy that most active flavonoid compounds exhibited an increasing accumulation pattern along with the increase in altitude. Vitexin and isovitexin were the major differentially accumulated flavonoids. Furthermore, we identified two potential metabolic biomarkers (vitexin and kaempferol 3-O-[2-O-ß-D-galactose-6-O-a-L-rhamnose]-ß-D-glucoside) to discriminate between dragon fruits from different geographical origins. CONCLUSION: Our findings provide insights into metabolic changes in dragon fruits grown at different altitudes. Furthermore, they show that growing pitaya at high altitudes can produce fruit with higher levels of bioactive compounds, particularly flavonoids.


Asunto(s)
Altitud , Cactaceae , Frutas , Metabolómica , Cactaceae/metabolismo , Cactaceae/química , China , Cromatografía Líquida de Alta Presión , Cromatografía Liquida/métodos , Flavonoides/metabolismo , Frutas/metabolismo , Frutas/química , Cromatografía Líquida con Espectrometría de Masas , Metaboloma , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos
20.
BMC Plant Biol ; 24(1): 342, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671368

RESUMEN

BACKGROUND: The gibberellic acid (GA) inhibitor, uniconazole, is a plant growth regulator commonly used in banana cultivation to promote dwarfing but also enhances the cold resistance in plants. However, the mechanism of this induced cold resistance remains unclear. RESULTS: We confirmed that uniconazole induced cold tolerance in bananas and that the activities of Superoxide dismutase and Peroxidase were increased in the uniconazole-treated bananas under cold stress when compared with the control groups. The transcriptome and metabolome of bananas treated with or without uniconazole were analyzed at different time points under cold stress. Compared to the control group, differentially expressed genes (DEGs) between adjacent time points in each uniconazole-treated group were enriched in plant-pathogen interactions, MAPK signaling pathway, and plant hormone signal transduction, which were closely related to stimulus-functional responses. Furthermore, the differentially abundant metabolites (DAMs) between adjacent time points were enriched in flavone and flavonol biosynthesis and linoleic acid metabolism pathways in the uniconazole-treated group than those in the control group. Temporal analysis of DEGs and DAMs in uniconazole-treated and control groups during cold stress showed that the different expression patterns in the two groups were enriched in the linoleic acid metabolism pathway. In addition to strengthening the antioxidant system and complex hormonal changes caused by GA inhibition, an enhanced linoleic acid metabolism can protect cell membrane stability, which may also be an important part of the cold resistance mechanism of uniconazole treatment in banana plants. CONCLUSIONS: This study provides information for understanding the mechanisms underlying inducible cold resistance in banana, which will benefit the production of this economically important crop.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metaboloma , Musa , Transcriptoma , Triazoles , Musa/genética , Musa/efectos de los fármacos , Musa/fisiología , Musa/metabolismo , Metaboloma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Triazoles/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/efectos de los fármacos , Frío , Perfilación de la Expresión Génica , Giberelinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA