Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Physiol ; 84: 17-40, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34705480

RESUMEN

ß-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein-coupled receptors. However, ß-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two ß-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed ß-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both ß-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that ß-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Animales , Glucosa/metabolismo , Homeostasis , Humanos , Ratones , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
2.
Genomics ; 116(4): 110873, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38823464

RESUMEN

Goat milk exhibits a robust and distinctive "goaty" flavor. However, the underlying genetic basis of goaty flavor remains elusive and requires further elucidation at the genomic level. Through comparative genomics analysis, we identified divergent signatures of certain proteins in goat, sheep, and cow. MMUT has undergone a goat-specific mutation in the B12 binding domain. We observed the goat FASN exhibits nonsynonymous mutations in the acyltransferase domain. Structural variations in these key proteins may enhance the capacity for synthesizing goaty flavor compounds in goat. Integrated omics analysis revealed the catabolism of branched-chain amino acids contributed to the goat milk flavor. Furthermore, we uncovered a regulatory mechanism in which the transcription factor ZNF281 suppresses the expression of the ECHDC1 gene may play a pivotal role in the accumulation of flavor substances in goat milk. These findings provide insights into the genetic basis underlying the formation of goaty flavor in goat milk. STATEMENT OF SIGNIFICANCE: Branched-chain fatty acids (BCFAs) play a crucial role in generating the distinctive "goaty" flavor of goat milk. Whether there is an underlying genetic basis associated with goaty flavor is unknown. To begin deciphering mechanisms of goat milk flavor development, we collected transcriptomic data from mammary tissue of goat, sheep, cow, and buffalo at peak lactation for cross-species transcriptome analysis and downloaded nine publicly available genomes for comparative genomic analysis. Our data indicate that the catabolic pathway of branched-chain amino acids (BCAAs) is under positive selection in the goat genome, and most genes involved in this pathway exhibit significantly higher expression levels in goat mammary tissue compared to other species, which contributes to the development of flavor in goat milk. Furthermore, we have elucidated the regulatory mechanism by which the transcription factor ZNF281 suppresses ECHDC1 gene expression, thereby exerting an important influence on the accumulation of flavor compounds in goat milk. These findings provide insights into the genetic mechanisms underlying flavor formation in goat milk and suggest further research to manipulate the flavor of animal products.


Asunto(s)
Cabras , Leche , Animales , Cabras/genética , Cabras/metabolismo , Leche/metabolismo , Leche/química , Gusto , Genómica , Transcriptoma , Femenino , Ovinos/genética , Ovinos/metabolismo , Bovinos/genética , Bovinos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo
3.
BMC Genomics ; 25(1): 661, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956513

RESUMEN

BACKGROUND: Breeding polled goats is a welfare-friendly approach for horn removal in comparison to invasive methods. To gain a comprehensive understanding of the genetic basis underlying polledness in goats, we conducted whole-genome sequencing of 106 Xinong Saanen dairy goats, including 33 horned individuals, 70 polled individuals, and 3 polled intersexuality syndrome (PIS) individuals. METHODS: The present study employed a genome-wide association study (GWAS) and linkage disequilibrium (LD) analysis to precisely map the genetic locus underlying the polled phenotype in goats. RESULTS: The analysis conducted in our study revealed a total of 320 genome-wide significant single nucleotide polymorphisms (SNPs) associated with the horned/polled phenotype in goats. These SNPs exhibited two distinct peaks on chromosome 1, spanning from 128,817,052 to 133,005,441 bp and from 150,336,143 to 150,808,639 bp. The present study identified three genome-wide significant SNPs, namely Chr1:129789816, Chr1:129791507, and Chr1:129791577, as potential markers of PIS-affected goats. The results of our LD analysis suggested a potential association between MRPS22 and infertile intersex individuals, as well as a potential association between ERG and the polled trait in goats. CONCLUSION: We have successfully identified three marker SNPs closely linked to PIS, as well as several candidate genes associated with the polled trait in goats. These results may contribute to the development of SNP chips for early prediction of PIS in goats, thereby facilitating breeding programs aimed at producing fertile herds with polled traits.


Asunto(s)
Trastornos del Desarrollo Sexual , Estudio de Asociación del Genoma Completo , Cabras , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Animales , Cabras/genética , Trastornos del Desarrollo Sexual/genética , Trastornos del Desarrollo Sexual/veterinaria , Femenino , Masculino , Secuenciación Completa del Genoma , Cuernos
4.
Annu Rev Pharmacol Toxicol ; 61: 421-440, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-32746768

RESUMEN

G protein-coupled receptors (GPCRs) form a superfamily of plasma membrane receptors that couple to four major families of heterotrimeric G proteins, Gs, Gi, Gq, and G12. GPCRs represent excellent targets for drug therapy. Since the individual GPCRs are expressed by many different cell types, the in vivo metabolic roles of a specific GPCR expressed by a distinct cell type are not well understood. The development of designer GPCRs known as DREADDs (designer receptors exclusively activated by a designer drug) that selectively couple to distinct classes of heterotrimeric G proteins has greatly facilitated studies in this area. This review focuses on the use of DREADD technology to explore the physiological and pathophysiological roles of distinct GPCR/G protein cascades in several metabolically important cell types. The novel insights gained from these studies should stimulate the development of GPCR-based treatments for major metabolic diseases such as type 2 diabetes and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Transducción de Señal , Humanos , Hipoglucemiantes , Receptores Acoplados a Proteínas G , Tecnología
5.
Small ; : e2401216, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593322

RESUMEN

Polarization-sensitive broadband optoelectronic detection is crucial for future sensing, imaging, and communication technologies. Narrow bandgap 2D materials, such as Te and PdSe2, show promise for these applications, yet their polarization performance is limited by inherent structural anisotropies. In this work, a self-powered, broadband photodetector utilizing a Te/PdSe2 van der Waals (vdWs) heterojunction, with orientations meticulously tailored is introduced through polarized Raman optical spectra and tensor calculations to enhance linear polarization sensitivity. The device exhibits anisotropy ratios of 1.48 at 405 nm, 3.56 at 1550 nm, and 1.62 at 4 µm, surpassing previously-reported photodetectors based on pristine Te and PdSe2. Additionally, it exhibits high responsivity (617 mA W-1 at 1550 nm), specific detectivity (5.27 × 1010 Jones), fast response (≈4.5 µs), and an extended spectral range beyond 4 µm. The findings highlight the significance of orientation-engineered heterostructures in enhancing polarization-sensitive photodetectors and advancing optoelectronic technology.

6.
J Transl Med ; 22(1): 593, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918793

RESUMEN

BACKGROUND: Sorafenib resistance is becoming increasingly common and disadvantageous for hepatocellular carcinoma (HCC) treatment. Ferroptosis is an iron dependent programmed cell death underlying the mechanism of sorafenib. Iron is crucial for synthesis of cofactors essential to mitochondrial enzymes and necessary for HCC proliferation, while mitochondrial iron overload and oxidative stress are associated with sorafenib induced ferroptosis. However, the crosstalk among iron homeostasis and sorafenib resistance is unclear. METHODS: We conducted bioinformatics analysis of sorafenib treated HCC datasets to analyze GCN5L1 and iron related gene expression with sorafenib resistance. GCN5L1 deleted HCC cell lines were generated by CRISPR technology. Sorafenib resistant HCC cell line was established to validate dataset analysis and evaluate the effect of potential target. RESULTS: We identified GCN5L1, a regulator of mitochondrial acetylation, as a modulator in sorafenib-induced ferroptosis via affecting mitochondrial iron homeostasis. GCN5L1 deficiency significantly increased sorafenib sensitivity in HCC cells by down-regulating mitochondrial iron transporters CISD1 expression to induce iron accumulation. Mitochondrial iron accumulation leads to an acceleration in cellular and lipid ROS. Sorafenib resistance is related to CISD1 overexpression to release mitochondrial iron and maintaining mitochondrial homeostasis. We combined CISD1 inhibitor NL-1 with sorafenib, which significantly enhanced sorafenib-induced ferroptosis by promoting mitochondrial iron accumulation and lipid peroxidation. The combination of NL-1 with sorafenib enhanced sorafenib efficacy in vitro and in vivo. CONCLUSIONS: Our findings demonstrate that GCN5L1/CISD1 axis is crucial for sorafenib resistance and would be a potential therapeutic strategy for sorafenib resistant HCC.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Ferroptosis , Homeostasis , Hierro , Neoplasias Hepáticas , Mitocondrias , Sorafenib , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Hierro/metabolismo , Humanos , Homeostasis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Animales , Ferroptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
7.
Liver Int ; 44(8): 1924-1936, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38597373

RESUMEN

BACKGROUND AND AIMS: Iron overload, oxidative stress and ferroptosis are associated with liver injury in alcohol-associated liver disease (ALD), however, the crosstalk among these regulatory pathways in ALD development is unclear. METHODS: ALD mouse model and general control of amino acid synthesis 5 like 1 (GCN5L1) liver knockout mice were generated to investigate the role of GCN5L1 in ALD development. Proteomic screening tests were performed to identify the key factors mediating GCN5L1 loss-induced ALD. RESULTS: Gene Expression Omnibus data set analysis indicates that GCN5L1 expression is negatively associated with ALD progression. GCN5L1 hepatic knockout mice develop severe liver injury and lipid accumulation when fed an alcohol diet. Screening tests identified that GCN5L1 targeted the mitochondrial iron transporter CISD1 to regulate mitochondrial iron homeostasis in ethanol-induced ferroptosis. GCN5L1-modulated CISD1 acetylation and activity were crucial for iron accumulation and ferroptosis in response to alcohol exposure. CONCLUSION: Pharmaceutical modulation of CISD1 activity is critical for cellular iron homeostasis and ethanol-induced ferroptosis. The GCN5L1/CISD1 axis is crucial for oxidative stress and ethanol-induced ferroptosis in ALD and is a promising avenue for novel therapeutic strategies.


Asunto(s)
Modelos Animales de Enfermedad , Ferroptosis , Hepatopatías Alcohólicas , Ratones Noqueados , Estrés Oxidativo , Animales , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/patología , Ratones , Hierro/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Etanol , Ratones Endogámicos C57BL , Humanos , Proteínas del Tejido Nervioso , Proteínas Mitocondriales
8.
J Nanobiotechnology ; 22(1): 130, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532399

RESUMEN

Traditional eye drops are administered via topical instillation. However, frequent dosing is needed due to their relatively rapid precorneal removal and low ocular bioavailability. To address these issues, stearoyl L-carnitine-modified nanoemulsions (SC-NEs) were fabricated. The physicochemical properties of SC-NEs in terms of size, morphology, zeta potential, encapsulation efficiency, and in vitro drug release behavior were characterized. The cellular uptake and mechanisms of SC-NEs were comprehensively studied in human corneal epithelial cells and the stearoyl L-carnitine ratio in SC-NEs was optimized. The optimized SC-NEs could target the novel organic cation/carnitine transporter 2 (OCTN2) and amino acid transporter B (0 +) (ATB0,+) on the corneal epithelium, which led to superior corneal permeation, ocular surface retention ability, ocular bioavailability. Furthermore, SC-NEs showed excellent in vivo anti-inflammatory efficacy in a rabbit model of endotoxin-induced uveitis. The ocular safety test indicated that the SC-NEs were biocompatible. In general, the current study demonstrated that OCTN2 and ATB0,+-targeted nanoemulsions were promising ophthalmologic drug delivery systems that can improve ocular drug bioavailability and boost the therapeutic effects of drugs for eye diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos , Células Epiteliales , Animales , Humanos , Conejos , Miembro 5 de la Familia 22 de Transportadores de Solutos/metabolismo , Transporte Biológico , Células Epiteliales/metabolismo , Carnitina/metabolismo , Carnitina/farmacología
9.
Arch Toxicol ; 98(6): 1891-1908, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522057

RESUMEN

Dexamethasone is widely used in pregnant women at risk of preterm birth to reduce the occurrence of neonatal respiratory distress syndrome and subsequently reduce neonatal mortality. Studies have suggested that dexamethasone has developmental toxicity, but there is a notable absence of systematic investigations about its characteristics. In this study, we examined the effects of prenatal dexamethasone exposure (PDE) on mother/fetal mice at different doses (0.2, 0.4, or 0.8 mg/kg b.i.d), stages (gestational day 14-15 or 16-17) and courses (single- or double-course) based on the clinical practice. Results showed that PDE increased intrauterine growth retardation rate, and disordered the serum glucose, lipid and cholesterol metabolic phenotypes, and sex hormone level of mother/fetal mice. PDE was further discovered to interfere with the development of fetal lung, hippocampus and bone, inhibits steroid synthesis in adrenal and testis, and promotes steroid synthesis in the ovary and lipid synthesis in the liver, with significant effects observed at high dose, early stage and double course. The order of severity might be: ovary > lung > hippocampus/bone > others. Correlation analysis revealed that the decreased serum corticosterone and insulin-like growth factor 1 (IGF1) levels were closely related to PDE-induced low birth weight and abnormal multi-organ development in offspring. In conclusion, this study systematically confirmed PDE-induced multi-organ developmental toxicity, elucidated its characteristics, and proposed the potential "glucocorticoid (GC)-IGF1" axis programming mechanism. This research provided an experimental foundation for a comprehensive understanding of the effect and characteristics of dexamethasone on fetal multi-organ development, thereby guiding the application of "precision medicine" during pregnancy.


Asunto(s)
Dexametasona , Relación Dosis-Respuesta a Droga , Desarrollo Fetal , Animales , Femenino , Embarazo , Dexametasona/toxicidad , Dexametasona/administración & dosificación , Masculino , Desarrollo Fetal/efectos de los fármacos , Ratones , Retardo del Crecimiento Fetal/inducido químicamente , Factor I del Crecimiento Similar a la Insulina/metabolismo , Glucocorticoides/toxicidad , Glucocorticoides/administración & dosificación , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
10.
BMC Biol ; 21(1): 68, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013569

RESUMEN

BACKGROUND: The accumulation of fatty acids in plants covers a wide range of functions in plant physiology and thereby affects adaptations and characteristics of species. As the famous woody oilseed crop, Acer truncatum accumulates unsaturated fatty acids and could serve as the model to understand the regulation and trait formation in oil-accumulation crops. Here, we performed Ribosome footprint profiling combing with a multi-omics strategy towards vital time points during seed development, and finally constructed systematic profiling from transcription to proteomes. Additionally, we characterized the small open reading frames (ORFs) and revealed that the translational efficiencies of focused genes were highly influenced by their sequence features. RESULTS: The comprehensive multi-omics analysis of lipid metabolism was conducted in A. truncatum. We applied the Ribo-seq and RNA-seq techniques, and the analyses of transcriptional and translational profiles of seeds collected at 85 and 115 DAF were compared. Key members of biosynthesis-related structural genes (LACS, FAD2, FAD3, and KCS) were characterized fully. More meaningfully, the regulators (MYB, ABI, bZIP, and Dof) were identified and revealed to affect lipid biosynthesis via post-translational regulations. The translational features results showed that translation efficiency tended to be lower for the genes with a translated uORF than for the genes with a non-translated uORF. They provide new insights into the global mechanisms underlying the developmental regulation of lipid metabolism. CONCLUSIONS: We performed Ribosome footprint profiling combing with a multi-omics strategy in A. truncatum seed development, which provides an example of the use of Ribosome footprint profiling in deciphering the complex regulation network and will be useful for elucidating the metabolism of A. truncatum seed oil and the regulatory mechanisms.


Asunto(s)
Acer , Ácidos Grasos , Ácidos Grasos/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Acer/genética , Acer/metabolismo , Ribosomas/metabolismo , Semillas/genética , Regulación de la Expresión Génica de las Plantas
11.
Gut ; 72(12): 2260-2271, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37739776

RESUMEN

OBJECTIVES: To identify indolepropionate (IPA)-predicting gut microbiota species, investigate potential diet-microbiota interactions, and examine the prospective associations of circulating IPA concentrations with type 2 diabetes (T2D) and coronary heart disease (CHD) risk in free-living individuals. DESIGN: We included 287 men from the Men's Lifestyle Validation Study, a substudy of the Health Professionals Follow-Up Study (HPFS), who provided up to two pairs of faecal samples and two blood samples. Diet was assessed using 7-day diet records. Associations between plasma concentrations of tryptophan metabolites and T2D CHD risk were examined in 13 032 participants from Nurses' Health Study (NHS), NHSII and HPFS. RESULTS: We identified 17 microbial species whose abundance was significantly associated with plasma IPA concentrations. A significant association between higher tryptophan intake and higher IPA concentrations was only observed among men who had higher fibre intake and a higher microbial species score consisting of the 17 species (p-interaction<0.01). Dietary and plasma concentrations of tryptophan and most kynurenine pathway metabolites were positively associated with T2D risk (HRQ5 vs Q1 ranged from 1.17 to 1.46) while a significant inverse association was found for IPA (HRQ5 vs Q1 (95% CI) 0.70 (0.56 to 0.88)). No associations were found in CHD for any plasma tryptophan metabolites. CONCLUSIONS: Specific microbial species and dietary fibre jointly predicted significantly higher circulating IPA concentrations at higher tryptophan intake. Dietary and plasma tryptophan, as well as its kynurenine pathway metabolites, demonstrated divergent associations from those for IPA, which was significantly predictive of lower risk of T2D.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Estudios de Seguimiento , Triptófano , Quinurenina , Dieta , Factores de Riesgo
12.
Small ; 19(37): e2301386, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37086119

RESUMEN

Perovskite-based photodetectors exhibit potential applications in communication, neuromorphic chips, and biomedical imaging due to their outstanding photoelectric properties and facile manufacturability. However, few of perovskite-based photodetectors focus on ultraviolet-visible-short-wavelength infrared (UV-Vis-SWIR) broadband photodetection because of the relatively large bandgap. Moreover, such broadband photodetectors with individual nanocrystal channel featuring monolithic integration with functional electronic/optical components have hardly been explored. Herein, an individual monocrystalline MAPbBr3 nanoplate-based photodetector is demonstrated that simultaneously achieves efficient UV-Vis-SWIR detection and fast-response. Nanoplate photodetectors (NPDs) are prepared by assembling single nanoplate on adjacent gold electrodes. NPDs exhibit high external quantum efficiency (EQE) and detectivity of 1200% and 5.37 × 1012 Jones, as well as fast response with rise time of 80 µs. Notably, NPDs simultaneously achieve high EQE and fast response, exceeding most perovskite devices with multi-nanocrystal channel. Benefiting from the high specific surface area of nanoplate with surface-trap-assisted absorption, NPDs achieve high performance in the near-infrared and SWIR spectral region of 850-1450 nm. Unencapsulated devices show outstanding UV-laser-irradiation endurance and decent periodicity and repeatability after 29-day-storage in atmospheric environment. Finally, imaging applications are demonstrated. This work verifies the potential of perovskite-based broadband photodetection, and stimulates the monolithic integration of various perovskite-based devices.

13.
Exp Dermatol ; 32(4): 310-323, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36394984

RESUMEN

The Koebner phenomenon, also known as isomorphic reaction, refers to the development of secondary lesions with the same clinical manifestations and histopathological characteristics as the primary lesions in normal skin after trauma or other stimuli. The triggering factors of Koebner phenomenon include physical trauma, chemical stimulation, mechanical stress, iatrogenic stimulation and pathogenic infection. Vitiligo, psoriasis and lichen planus are considered true Koebner phenomenon. Recent studies have shown that immunological disorders, oxidative stress, defective melanocyte adhesion and growth factor deficiency are the main pathological mechanisms of vitiligo Koebner phenomenon. In psoriasis, triggers may drive skin inflammation to induce a psoriatic phenotype through multiple signalling pathways and thereby cause Koebner phenomenon in susceptible individuals. Significantly, keratinocytes mediate the occurrence of Koebner phenomenon in psoriasis through mechano-induced signalling pathways after sensing mechanical signals and explains the high frequency of psoriasis lesions on the extensor side of the elbow and knee joints. On the contrary, TRPA1-driven mechano-transduction, autoimmunity and actinic damage are the underlying mechanisms of Koebner phenomenon in lichen planus. In this review, we have summarized the current understanding of the characteristics and pathogenesis of Koebner phenomenon.


Asunto(s)
Dermatitis , Liquen Plano , Psoriasis , Vitíligo , Humanos , Vitíligo/complicaciones , Psoriasis/patología
14.
Exp Dermatol ; 32(4): 511-520, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36620869

RESUMEN

Keratinocytes regulate melanogenesis in a paracrine manner. Previous studies have shown that melatonin can directly inhibit melanin production in the melanocytes. However, it is unclear whether melatonin can also indirectly regulate melanogenesis through the keratinocytes. In this study, we explored the role of melatonin in regulating keratinocyte-mediated melanogenesis using reconstructed human epidermis (RHE). Melatonin showed an inhibitory effect on melanin synthesis in this model. Furthermore, the conditioned media from melatonin-treated HaCaT cells downregulated melanogenesis-related genes, including MITF, TYR, TYRP1, DCT and RAB27A in the pigment MNT1 cells, and decreased levels of phosphorylated ERK, JNK and p38. RNA sequencing further showed that mitochondrial functions and oxidative stress pathway in the MNT1 cells were inhibited by the conditioned medium from melatonin-treated HaCaT cells. Furthermore, melatonin reduced the secretion of ET-1 and PTGS2 from HaCaT cells by inhibiting the JAK2/STAT3 signalling pathway. In conclusion, melatonin downregulates the paracrine factors ET-1 and PTGS2 in the keratinocytes by inhibiting the JAK2/STAT3 pathway, which reduces melanin production in pigment cells. Thus, melatonin has a potential therapeutic effect on skin pigmentation disorders.


Asunto(s)
Melaninas , Melatonina , Humanos , Melaninas/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Ciclooxigenasa 2/metabolismo , Queratinocitos/metabolismo , Melanocitos/metabolismo , Monofenol Monooxigenasa/metabolismo
15.
Helicobacter ; 28(1): e12944, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36539375

RESUMEN

BACKGROUND: Chronic atrophic gastritis (CAG) is a pathological stage in the Correa's cascade, whereby Helicobacter pylori (H. pylori) infection is the primary cause. Cellular senescence is an inducing factor for cancer occurrence and cellular senescence is an obvious phenomenon in gastric mucosal tissues of H. pylori-positive CAG patients. METHODS: In this review, we collated the information on cellular senescence and H. pylori-positive CAG. RESULTS: At present, only a few studies have observed the effect of cellular senescence on precancerous lesions. In combination with the latest research, this review has collated the information on cellular senescence and H. pylori-positive CAG from four aspects- telomere shortening, DNA methylation, increased reacive oxygen species (ROS) production, and failure of autophagy. CONCLUSION: This is expected to be helpful for exploring the relevant mechanisms underlying inflammatory cancerous transformation and formulating appropriate treatment strategies.


Asunto(s)
Gastritis Atrófica , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Gastritis Atrófica/patología , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/patología , Mucosa Gástrica/patología , Senescencia Celular , Neoplasias Gástricas/patología
16.
Inorg Chem ; 62(37): 14922-14930, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37674254

RESUMEN

The incorporation of chirality endows Pt(II)-based metal-organic complexes (MOCs) with unique potentials in several fields such as nonlinear optics and chiral catalysis. However, the exploration of chiral Pt(II) metallacycles in biological responses remains underdeveloped. Herein, we designed and synthesized two chiral Pt(II) metallacycles 1 and 2 via the coordination-driven self-assembly of chiral 1,1'-spirobiindane-7,7'-diol (SPINOL)-derived ligands and cis-Pt(PEt3)2(OTf)2 (90°Pt). Their structures were well characterized by 1H NMR, 31P{1H} NMR, ESI-TOF-MS, and X-ray crystallography, and their photophysical properties were investigated by UV-vis absorption, fluorescence, and circular dichroism (CD) spectroscopies. Then, the antitumor activity of the two chiral metallacycles in vitro was further tested. Complexes 1 and 2 exhibited strong cytotoxicity, especially toward the A549 cells. The destruction of the mitochondrial function, the inhibition of the glutathione (GSH)/glutathione disulfide (GSSG) level, and the inactivation of superoxide dismutase (SOD) induced by complexes 1 and 2 led to the massive accumulation of reactive oxygen species (ROS). The overloaded ROS then triggered apoptotic cell death, and the release of damage-associated molecular patterns (DAMPs) further induced immunogenic cell death (ICD). To the best of our knowledge, this is the first example of Pt(II)-based metallacycles that can induce immunogenic cell death, providing a new strategy for the future design and construction of immune-modulating platinum agents in cancer therapy.


Asunto(s)
Complejos de Coordinación , Muerte Celular Inmunogénica , Humanos , Especies Reactivas de Oxígeno , Glutatión , Células A549 , Apoptosis , Complejos de Coordinación/farmacología
17.
Mol Biol Rep ; 50(4): 3557-3568, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787056

RESUMEN

BACKGROUND: Lung cancer is a high incidence cancer on a worldwide basis and has become a major public health problem. Lung adenocarcinoma (LUAD) makes up approximately half of all lung cancers and is a threat to human health. Long non-coding RNAs (lncRNAs) is an important regulator of the development and progression of lung adenocarcinoma. In this manuscript we examined the role and potential mechanism of lncRNA PCAT6 in the development of LUAD. METHODS AND RESULTS: Differences in lncRNA PCAT6 levels between LUAD samples and normal samples were first explored in the GEPIA database. We found that lncRNA PCAT6 expression was elevated, which was also validated in lung adenocarcinoma tissues and cell lines. Using western blotting, CCK-8, EdU, wound healing and transwell assays, we found that knockdown of lncRNA PCAT6 inhibited EMT, proliferation, migration, and invasion of LUAD cells. We noted a predicted a binding site for lncRNA PCAT6 and miR-545-3p through conducting bioinformatic analyses, and their binding was subsequently verified by a dual-luciferase reporter assay. Rescue experiments confirmed that miR-545-3p inhibitor partially abolished the inhibition function of lncRNA PCAT6 knockdown on LUAD cells. In addition, we predicted the downstream target genes of miR-545-3p and verified them by RT-qPCR. We found that EGFR was reduced in the silence of lncRNA PCAT6 and upregulated after miR-545-3p inhibition. CONCLUSION: This study demonstrates that lncRNA PCAT6 promotes a more aggressive LUAD phenotype by sponging miR-545-3p. This finding may provide new ideas for the treatment of lung cancer.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Movimiento Celular/genética , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Adenocarcinoma/genética , Adenocarcinoma/patología , Pulmón/metabolismo
18.
Acta Derm Venereol ; 103: adv11643, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787420

RESUMEN

In China, there is a lack of data regarding the awareness and treatment preferences among patients with vitiligo and their families. To address this gap, a cross-sectional questionnaire-based study was conducted to investigate disease awareness and treatment preferences in Chinese patients with vitiligo. The study also evaluated willingness to pay, using 2 standardized items, and assessed quality of life, using the Dermatology Life Quality Index (DLQI) score. Data from 307 patients with vitiligo (59.3% women, mean age 28.98 years, range 2-73 years) were analysed. Of these patients, 44.7% had insufficient knowledge of vitiligo, particularly those from rural areas or with low levels of education. Mean DLQI total score was 4.86 (5.24 for women and 4.30 for men). Among the most accepted treatments were topical drugs, phototherapy, and systemic therapy. Patients were relatively conservative about the duration and cost of treatment, with only 27.7% willing to pay more than 10,000 Chinese yuan renminbi (CNY) for complete disease remission. High level of education, high income, skin lesions in specific areas, and skin transplantation therapy predicted higher willingness to pay. Insufficient knowledge was associated with a higher burden of disease. In order to reduce the disease burden and improve treatment adherence it is crucial to enhance disease awareness and take into account patient preferences.


Asunto(s)
Vitíligo , Masculino , Humanos , Femenino , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Vitíligo/diagnóstico , Vitíligo/terapia , Calidad de Vida , Estudios Transversales , Encuestas y Cuestionarios , China
19.
Nutr J ; 22(1): 46, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37789346

RESUMEN

BACKGROUND: Plant-based dietary patterns are gaining more attention due to their potential in reducing the risk of developing major chronic diseases, including type 2 diabetes (T2D), cardiovascular disease (CVD), cancer, and mortality, while an up-to-date comprehensive quantitative review is lacking. This study aimed to summarize the existing prospective observational evidence on associations between adherence to plant-based dietary patterns and chronic disease outcomes. METHODS: We conducted a systematic review and meta-analysis of evidence across prospective observational studies. The data sources used were PubMed and MEDLINE, Embase, Web of Science, and screening of references. We included all prospective observational studies that evaluated the association between adherence to plant-based dietary patterns and incidence of T2D, CVD, cancer, and mortality among adults (≥ 18 years). RESULTS: A total of 76 publications were identified, including 2,230,443 participants with 60,718 cases of incident T2D, 157,335 CVD cases, 57,759 cancer cases, and 174,435 deaths. An inverse association was observed between higher adherence to a plant-based dietary pattern and risks of T2D (RR, 0.82 [95% CI: 0.77-0.86]), CVD (0.90 [0.85-0.94]), cancer (0.91 [0.87-0.96]), and all-cause mortality (0.84 [0.78-0.92]) with moderate to high heterogeneity across studies (I2 ranged: 47.8-95.4%). The inverse associations with T2D, CVD and cancer were strengthened when healthy plant-based foods, such as vegetables, fruits, whole grains, and legumes, were emphasized in the definition of plant-based dietary patterns (T2D: 0.79 [0.72-0.87]; CVD: 0.85 [0.80-0.92]; cancer: 0.86 [0.80-0.92]; I2 ranged: 53.1-84.1%). Association for mortality was largely similar when the analyses were restricted to healthy plant-based diets (0.86 [0.80-0.92], I2 = 91.9%). In contrast, unhealthy plant-based diets were positively associated with these disease outcomes. Among four studies that examined changes in dietary patterns, increased adherence to plant-based dietary patterns was associated with a significantly reduced risk of T2D (0.83 [0.71-0.96]; I2 = 71.5%) and a marginally lower risk of mortality (0.95 [0.91-1.00]; I2 = 0%). CONCLUSIONS: Better adherence to plant-based dietary patterns, especially those emphasizing healthy plant-based foods, is beneficial for lowering the risks of major chronic conditions, including T2D, CVD, cancer, as well as premature deaths. REGISTRATION OF REVIEW PROTOCOL: This review was registered at the PROSPERO International Prospective Register of Systematic Reviews ( https://www.crd.york.ac.uk/PROSPERO/ ) with the registration number CRD42022290202.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Neoplasias , Adulto , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/etiología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/prevención & control , Dieta , Verduras , Neoplasias/epidemiología , Neoplasias/prevención & control , Estudios Observacionales como Asunto
20.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373175

RESUMEN

MicroRNA-26 (miR-26a and miR-26b) plays a critical role in lipid metabolism, but its endogenous regulatory mechanism in fatty acid metabolism is not clear in goat mammary epithelial cells (GMECs). GMECs with the simultaneous knockout of miR-26a and miR-26b were obtained using the CRISPR/Cas9 system with four sgRNAs. In knockout GMECs, the contents of triglyceride, cholesterol, lipid droplets, and unsaturated fatty acid (UFA) were significantly reduced, and the expression of genes related to fatty acid metabolism was decreased, but the expression level of miR-26 target insulin-induced gene 1 (INSIG1) was significantly increased. Interestingly, the content of UFA in miR-26a and miR-26b simultaneous knockout GMECs was significantly lower than that in wild-type GMECs and miR-26a- and miR-26b-alone knockout cells. After decreasing INSIG1 expression in knockout cells, the contents of triglycerides, cholesterol, lipid droplets, and UFAs were restored, respectively. Our studies demonstrate that the knockout of miR-26a/b suppressed fatty acid desaturation by upregulating the target INSIG1. This provides reference methods and data for studying the functions of miRNA families and using miRNAs to regulate mammary fatty acid synthesis.


Asunto(s)
Cabras , MicroARNs , Animales , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , Células Epiteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Triglicéridos/metabolismo , Colesterol/metabolismo , Ácidos Grasos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA