Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Anal Chem ; 95(10): 4744-4752, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36867551

RESUMEN

Rapid and sensitive pathogen detection methods are critical for disease diagnosis and treatment. RPA-CRISPR/Cas12 systems have displayed remarkable potential in pathogen detection. A self-priming digital PCR chip is a powerful and attractive tool for nucleic detection. However, the application of the RPA-CRISPR/Cas12 system to the self-priming chip still has great challenges due to the problems of protein adsorption and two-step detection mode of RPA-CRISPR/Cas12. In this study, an adsorption-free self-priming digital chip was developed and a direct digital dual-crRNAs (3D) assay was established based on the chip for ultrasensitive detection of pathogens. This 3D assay combined the advantages of rapid amplification of RPA, specific cleavage of Cas12a, accurate quantification of digital PCR, and point-of-care testing (POCT) of microfluidics, enabling accurate and reliable digital absolute quantification of Salmonella in POCT. Our method can provide a good linear relationship of Salmonella detection in the range from 2.58 × 101 to 2.58 × 104 cells/mL with a limit of detection ∼0.2 cells/mL within 30 min in a digital chip by targeting the invA gene of Salmonella. Moreover, the assay could directly detect Salmonella in milk without nucleic acid extraction. Therefore, the 3D assay has the significant potential to provide accurate and rapid pathogen detection in POCT. This study provides a powerful nucleic detection platform and facilitates the application of CRISPR/Cas-assisted detection and microfluidic chips.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Adsorción , Bioensayo , Núcleo Celular , Técnicas de Amplificación de Ácido Nucleico
2.
Small ; 19(49): e2303398, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37612816

RESUMEN

Digital nucleic acid detection based on microfluidics technology can quantify the initial amount of nucleic acid in the sample with low equipment requirements and simple operations, which can be widely used in clinical and in vitro diagnosis. Recently, isothermal amplification technologies such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats-CRISPR associated proteins (CRISPR-Cas) assisted technologies have become a hot spot of attention and state-of-the-art digital nucleic acid chips have provided a powerful tool for these technologies. Herein, isothermal amplification technologies including RPA, LAMP, and CRISPR-Cas assisted methods, based on digital nucleic acid microfluidics chips recently, have been reviewed. Moreover, the challenges of digital isothermal amplification and possible strategies to address them are discussed. Finally, future directions of digital isothermal amplification technology, such as microfluidic chip and device manufacturing, multiplex detection, and one-pot detection, are outlined.


Asunto(s)
Ácidos Nucleicos , Recombinasas , Sistemas CRISPR-Cas/genética , Bioensayo , Técnicas de Amplificación de Ácido Nucleico
3.
Anal Biochem ; 674: 115200, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37302776

RESUMEN

Nucleic acids detection has become essential in the identification of many infectious diseases and tumors. Conventional qPCR instruments are not suitable for point-of-care Moreover, current miniaturized nucleic acid detection equipment has limited throughput and multiplex detection capabilities, typically allowing the detection of a limited number of samples. Here, we present an affordable, portable, and high-throughput nucleic acid detection device for point-of-care detection. This portable device is approximately 220 × 165 × 140 mm in size and about 3 kg in weight. It can provide stable and accurate temperature control and analyze two fluorescent signals (FAM and VIC) and run 16 samples simultaneously. As a proof of concept, we used the two purified DNA samples from Bordetella pertussis and Canine parvovirus and the results showed good linearity and coefficient of variation. Moreover, this portable device can detect as low as 10 copies and has good specificity. Therefore, our device can provide advantages in real-time diagnosis of high-throughput nucleic acid detection in the field, especially for resource-limited conditions.


Asunto(s)
Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ADN , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad
4.
Analyst ; 147(19): 4371-4378, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36043895

RESUMEN

Copy number variation (CNV), including genomic deletions and duplication, has been associated with many kinds of diseases. It is crucial to precisely quantify the copy number variation of samples among patients, which may guide treatment. Digital PCR (dPCR) enables high-resolution CNV analysis through the ultraprecise absolute quantification of specific nucleic acid sequences. We explored a platform named digital CNV detection chip (DCD-chip), which can simultaneously and absolutely quantify the GPR146 and RPPH1 genes with amounts as low as 1.4 copies per µL. Finally, we verified that DCD-chip was more accurate than qPCR when the samples were diluted to a certain extent, which indicated the powerful quantification capacity of our DCD-chip platform.


Asunto(s)
Variaciones en el Número de Copia de ADN , Ácidos Nucleicos , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
J Mol Recognit ; 31(8): e2714, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29656411

RESUMEN

Excessive reactive oxygen species (ROS) levels are harmful to the body. The peroxidase, GPx, and the superoxide dismutase, SOD, are important antioxidant enzymes for preventing ROS-induced damage. Se-CuZn-65P is an enzyme mimetic with dual GPx and SOD antioxidant function. However, currently, its production is mainly based on the cysteine auxotrophic expression technique, which is inefficient, expensive, and time consuming. In this study, we combined protein engineering and the chemical mutation method to synthesize Se-CuZn-65P. The DNA sequence encoding the 65 amino acid peptide with the desired sequence transformations to incorporate the SOD and the GPx catalytic sites was cloned and expressed in a soluble protein expression vector. The protein yield increased up to 152 mg/L, which is 10 times higher than in previous studies. The SOD and GPx activity of Se-CuZn-65P was high (1181 U/mg and 753 U/µmol, respectively). The binding constant of glutathione was 5.6 × 104  L·mol-1 , which shows that Se-CuZn-65P efficiently catalyzed hydrogen peroxide reduction by glutathione. Mitochondrial damage experiments confirmed the double protective role of the Se-CuZn-65P peptide and demonstrated functional synergy between the SOD and the GPx domains, which indicates its potential to be used in the treatment of ROS-related diseases. Our research may give a new thought to increase the yield of mimic.


Asunto(s)
Antioxidantes/química , Glutatión Peroxidasa/química , Péptidos/química , Superóxido Dismutasa/química , Animales , Antioxidantes/metabolismo , Dominio Catalítico , Glutatión , Glutatión Peroxidasa/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Péptidos/genética , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/química , Superóxido Dismutasa/genética
6.
Int J Mol Sci ; 19(5)2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29762467

RESUMEN

The cell viability and apoptosis of tumor U937 cells treated by blue light (BL) irradiation have been examined. BL irradiation can specially inhibit the proliferation and promote the apoptosis of U937 cells, relating to the production of reactive oxygen species (ROS) and the decline of mitochondrial membrane potential (ΔΨm). The apoptosis is further associated with varying downregulated B-cell lymphoma-extra large (Bcl-XL) and B-cell lymphoma 2 (Bcl-2) genes, upregulated Bcl-2-associated X (Bax) gene, the activation of caspase-3 and caspase-9, and the cleavage of poly (ADP-ribose) polymerase (PARP) by the BL irradiation process. Moreover, BL irradiation induced proliferation inhibition is higher than that treated by a common chemotherapeutic drug of homoharringtonine (HHT). When we synergize BL irradiation with HHT (BL-HHT), a higher proliferation inhibition is obtained than that treated by BL irradiation or HHT alone. These results are helpful for establishing a low toxicity and high efficiency strategy of BL irradiation for clinical treatment of acute myeloid leukemia, not limited to U937 cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de la radiación , Harringtoninas/farmacología , Luz , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Caspasas/genética , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Homoharringtonina , Humanos , Potencial de la Membrana Mitocondrial , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
7.
Int J Mol Sci ; 18(12)2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29232922

RESUMEN

Panax ginseng is a traditional medicine. Fresh ginseng is one of the most important industries related to ginseng development, and fresh ginseng of varying ages has different medicinal properties. Previous research has not systematically reported the correlation between changes in key enzyme activity with changes in ginsenoside content in fresh ginseng over time. In this study, for the first time, we use ginseng samples of varying ages in Ji'an and systematically reported the changes in the activity of seven key enzymes (HMGR, FPS, SS, SE, DS, CYP450, and GT). We investigated the content of ginsenoside and gene expression of these key enzymes. Ginsenoside content was measured using HPLC. HPLC, GC-MS, and LC-MS were combined to measure the enzyme activity of the key enzymes. Quantitative PCR was used in the investigation of gene expression. By analyzing the correlation between the enzyme activity and the transcription level of the key enzymes with ginsenoside content, we found that DS and GT enzyme activities are significantly correlated with the ginsenoside content in different ages of ginseng. Our findings might provide a new strategy to discriminate between ginseng of different years. Meanwhile, this research provides important information for the in-depth study of ginsenoside biosynthesis.


Asunto(s)
Expresión Génica , Ginsenósidos/biosíntesis , Panax/crecimiento & desarrollo , Proteínas de Plantas/genética , Vías Biosintéticas , Cromatografía Líquida de Alta Presión , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ginsenósidos/análisis , Panax/genética , Panax/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Espectrometría de Masas en Tándem
8.
Med Oncol ; 39(5): 52, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35150326

RESUMEN

Light-emitting diode (LED)-based therapies, particularly blue LEDs with wavelengths of 400-500 nm, have shown beneficial results in several cancers, including melanoma, lymphoid cells, and skin tumors. In this study, the cell viability and apoptosis of Kasumi-1 cells treated by blue light (BL) irradiation have been explored. Firstly, BL can specially inhibit the proliferation and promote the apoptosis of Kasumi-1 cells. Furthermore, the apoptosis was triggered by the production of reactive oxygen species and the decline of mitochondrial membrane potential which was regulated by the ratio of Bcl-2(Bcl-xL)/Bax; BL caused the cells' final apoptosis accompanied with the increased cleavage of caspase-3 and poly-ADP-ribose polymerase. Finally, BL induced the degradation of AML1-ETO dependent on the activation of caspase-3. These results are helpful for establishing a low toxicity and high efficiency strategy of BL irradiation for clinical treatment of Kasumi-1 cells.


Asunto(s)
Apoptosis/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Potencial de la Membrana Mitocondrial/efectos de la radiación , Proteínas de Fusión Oncogénica/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Especies Reactivas de Oxígeno/efectos de la radiación , Caspasa 3/metabolismo , Línea Celular Tumoral , Color , Subunidad alfa 2 del Factor de Unión al Sitio Principal/efectos de la radiación , Humanos , Proteínas de Fusión Oncogénica/efectos de la radiación , Estimulación Luminosa/métodos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/efectos de la radiación
9.
Front Microbiol ; 13: 924533, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756035

RESUMEN

Viruses contribute to the mortality of organisms, consequentially altering biological species composition of an ecosystem and having a threat on human health. As the most famous model for the initiation of virus infection, the Hershey-Chase experiment has revealed that on infection, the bacteriophage genomic DNA is injected into its host bacterium, while the viral capsid is left on the outer membrane of host cell. However, little is known about the injection of any other materials into the cytoplasm of host cells along with genomic DNA to trigger the virus life cycle. In this study, the results showed that palmitic amide packaged in the virions of GVE2, a bacteriophage infecting deep-sea hydrothermal vent thermophile Geobacillus sp. E263, promoted virus infection. Palmitic amide was interacted with acetate kinase to increase its enzymatic activity, thus enhancing the acetate-mediated energy metabolism. Furthermore, palmitic amide promoted tricarboxylic acid cycle (TCA cycle) to support virus infection. These data indicated that palmitic amide, packaged in the virions, might serve as a second messenger at the initiation step of virus infection by enhancing the host energy metabolism. Therefore our study revealed a novel mechanism for the initiation of the virus life cycle.

10.
PLoS One ; 17(6): e0269238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35696360

RESUMEN

Heavy-metal pollution has been established to affect ginseng quality. However, this effect is still unknown in ginseng of different ages, emphasizing the need to investigate the effects of heavy metals in soils on ginseng growth. Herein, we determined the content of heavy metals (Cu, Cd, Pb, Hg, and As) in ginseng of different ages (2 to 6-year-old) and the corresponding soil samples. Then, the total ginsenosides content of ginseng and rate-limiting enzyme (HMGR, SQE, CYP450) activity in the synthesis of ginsenosides were assessed. Results from 200 differently-aged Chinese ginseng showed that increased ginsenoside content in 3 to 5-year-old ginseng was paralleled by increased heavy metal element content in ginseng and its soil. The activity of rate-limiting enzymes increased in the first four years of ginseng growth and then exhibited a steady or downward trend. Further analysis suggested that heavy metal elements in soils could directly affect ginsenoside content. Moreover, we found that Cu significantly affected the rate-limiting enzyme CYP450 activity. Further principal component analysis and correlation analysis found that heavy metals could obviously inhibit ginseng growth during the 5th and 6th years. Heavy metal content in soils has huge prospects for predicting ginsenoside, Cu and As content in ginseng. This study provided support for ginseng cultivation, quality research and quality assessment.


Asunto(s)
Ginsenósidos , Metales Pesados , Panax , Contaminantes del Suelo , China , Monitoreo del Ambiente , Ginsenósidos/análisis , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
11.
Talanta ; 237: 122977, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34736699

RESUMEN

Nucleic acid extraction and purification before amplification is considered an essential step for nucleic acid amplification testing. However, this may cause losses or introduce errors that can lead to inaccurate results, especially when using samples with a small nucleic acid concentration. Here, we developed a direct digital chip that enabled us to detect nucleic acid without DNA extraction and purification. We have developed a self-priming liquid-dispensing digital PCR chip that does not require any external power. This is a robust anti-evaporation digital PCR chip with fast sampling and accurate quantification performance. Using this chip, we have established an on-chip direct nucleic acid amplification method that does not require nucleic acid extraction and purification for liquid biopsy samples. In order to verify the feasibility of this chip for clinical samples, we detected the EGFR T790M mutation from plasma. Results showed that EGFR T790M mutation could be detected with an accuracy of 100% and a sensitivity of 0.01%. Without nucleic acid extraction and purification, the assay avoids complex pre-processing, thus saving time and achieving precise quantification. We expect our direct digital PCR chip to have practical applications in diagnosis, screening, and research, especially in resource-deprived regions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Resistencia a Antineoplásicos , Receptores ErbB/genética , Humanos , Mutación , Reacción en Cadena de la Polimerasa , Inhibidores de Proteínas Quinasas
12.
Talanta ; 250: 123725, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834974

RESUMEN

Digital PCR is a sensitive detection method, which has important applicability in liquid biopsy through the measurement of ctDNA. However, the current sample pre-processing of ctDNA and the multiplex detection capability of digital PCR have limitations. In view of the above two aspects, we developed a digital PCR chip with multiplex capability and established a direct amplification detection method without nucleic acid extraction. Through the design and processing of the chip, we established a self-priming multiplex digital PCR chip, which can detect 4 targets using single fluorescence. This method can be applied to most digital PCR chips. In addition, we used the plasma of lung cancer patients to establish a direct digital PCR detection method based on the chip, thereby avoiding disadvantages caused by the ctDNA extraction process. As a proof of concept, we prepared blood plasma samples with different concentration of ctDNA to prove the chip's multiplex detection capabilities and the results suggested that this multiplex digital PCR is accurate. Overall, our platform provides a novel and promising option for the detection of ctDNA.


Asunto(s)
ADN Tumoral Circulante , Neoplasias Pulmonares , ADN Tumoral Circulante/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Mutación
13.
Biosens Bioelectron ; 217: 114715, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174359

RESUMEN

Liquid biopsies have piqued the interest of researchers as a new tumor diagnosis technique due to their unique benefits of non-invasiveness, sensitivity, and convenience. Recent advances in microfluidic technology have integrated separation, purification, and detection, allowing for high-throughput, high-sensitivity, and high-controllability detection of specific biomarkers in liquid biopsies. With the increasing demand for tumor detection and individualized treatment, new challenges are emerging for the ever-improving microfluidic technology. The state-of-the-art microfluidic design and fabrications have been reviewed in this manuscript, and how this technology can be applied to liquid biopsies from the point of view of the detection process. The primary discussion objectives are circulating tumor cells (CTCs), exosomes, and circulating nucleic acid (ctDNA). Furthermore, the challenges and future direction of microfluidic technology in detecting liquid biomarkers have been discussed.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos Libres de Células , Células Neoplásicas Circulantes , Humanos , Biopsia Líquida/métodos , Microfluídica/métodos , Células Neoplásicas Circulantes/patología
14.
Talanta ; 225: 121981, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592729

RESUMEN

Gastric cancer (GC) is a common malignant digestive tract tumor that leads to high mortality worldwide. Early diagnosis of GC is very important for adequate treatment. However, a rapid, specific and sensitive method for the detection of GC is currently not available. Here, a biosensor CPs/AuNP-AuE, the gold nanoparticle (AuNP)-modified Au electrode (AuE) which was coupled with DNA capture probes (CPs), was developed to detect the content of miR-100 in the sera of GC patients. The results showed that AuNPs were uniformly deposited on the surface of AuE. AuNPs enhanced the electrical conductivity and improved the effective area of AuE. CPs were successfully assembled on AuNP-AuE that could be digested by duplex-specific nuclease (DSN) from the miR-100/CPs complex on the electrode, improving the sensitivity of the biosensor by recycling miR-100. The data revealed that the biosensor was highly specific for the detection of miR-100, which had the ability to distinguish one base-pair mistake in miR-100. The detection of the biosensor for miR-100 ranged from 100 aM to 10 pM and the limit of detection (LOD) was estimated to be 100 aM. The detection results of 100 human sera samples using this biosensor indicated that the cutoff for the detection of gastric cancer was 5 fM. Therefore the biosensor developed in our study served as a rapid, specific and sensitive strategy for the detection of gastric cancer in clinic.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Neoplasias Gástricas , Técnicas Electroquímicas , Oro , Humanos , Límite de Detección , MicroARNs/sangre , MicroARNs/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética
15.
Front Cell Dev Biol ; 8: 574799, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324634

RESUMEN

P53 is a transcriptional factor that plays important roles in apoptosis and is mutated in more than 50% of tumor cells. However, the restoration of mutated p53 to the level similar to wild-type p53 by a natural compound has not been explored intensively. In this study, the 2-[(4-hydroxybenzyl) amino] phenol (HBAP) compound, obtained from deep-sea virus-challenged thermophile Geobacillus sp. E263, interacted specifically with the mutated p53 protein. HBAP was able to induce apoptosis of p53-mutated breast cancer cells, but not normal breast cells and p53-unmutated breast cancer cells. HBAP activated the mutant p53 transcriptional activity by restoring the function of mutant p53 to that of wild-type p53. Further analysis indicated that HBAP bound only to the DNA binding domain of mutant p53 and that the interaction was dependent on the HBAP hydroxyl groups. In vivo data demonstrated that HBAP was toxicity-free and could suppress tumor growth by inducing tumor cell apoptosis. Therefore our findings revealed that recovering mutated p53 function to that of wild-type p53 caused by HBAP triggered cancer cell apoptosis and that metabolites from deep-sea virus-challenged thermophiles could be a promising source of anti-tumor drugs.

16.
Biosens Bioelectron ; 163: 112291, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421630

RESUMEN

Massive viral outbreaks draw attention to viruses that have not been thoroughly studied or understood. In recent decades, microfluidic chips, known as "lab-on-a-chip", appears as a promising tool for the detection of viruses. Here, we review the development of microfluidic chips that could be used in response to viral detection, specifically for viruses involved in more recent outbreaks. The advantages as well as the disadvantages of microfluidic systems are discussed and analyzed. We also propose ideas for future development of these microfluidic chips and we expect this advanced technology to be used in the future for viral outbreaks.


Asunto(s)
Técnicas Biosensibles , Técnicas Analíticas Microfluídicas , Virus , Dispositivos Laboratorio en un Chip , Microfluídica
17.
RSC Adv ; 9(67): 39124-39132, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-35540666

RESUMEN

Autophagy is an important mechanism for cell death regulation. To improve the anticancer effect during the treatment of leukemia and promote the apoptosis of leukemic cells, it is important to define the relationship between autophagy and apoptosis. A key bioactive compound in traditional Chinese medicine, 20(s)-Ginsenoside (GRh2), demonstrated an advancement in leukemia treatment. Blue LED therapy (BL) is a physical treatment method that can induce leukemic cell death. In this study, we tested the effect of 20(s)-GRh2, BL, and their combination (BL-GRh2) on the activation of leukemic cell apoptosis and autophagy. Both treatments, whether used individually or simultaneously, induce apoptosis through the induction of reactive oxygen species (ROS), disrupted mitochondrial membrane potential (MMP) and regulated the expression of apoptosis-related genes and proteins. Furthermore, using western blotting to analyze the autophagy markers LC3B and P62, we detected the activation of autophagy. In cells treated with autophagy inhibitor 3-MA, both autophagy and apoptosis were inhibited, either by BL alone or by BL-GRh2. However, apoptosis in 20(s)-GRh2-treated cells was enhanced. In cells treated with apoptosis suppressor Z-VAD-FMK, autophagy was inhibited in the BL and BL-GRh2-treated cells, although it was enhanced in cells treated with 20(s)-GRh2 alone. Moreover, we observed a stronger induction of apoptosis by BL-GRh2 in myeloid leukemia cells. Our data indicate that autophagy induced by different factors can play diverse roles on the same cells. Our results also indicate that the combination of traditional Chinese medicine with physical therapy may be a new strategy for anti-cancer therapy.

18.
Nutrients ; 10(3)2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29518056

RESUMEN

Acute myeloid leukemia (AML) and Chronic myelogenous leukemia (CML) are common leukemia in adults. 20(S)-GRh2 is an important bioactive substance that is present in Panax ginseng. However, there are no investigations that deal with the comparison of apoptosis, the occurrence of autophagy, and the relationship between apoptosis and autophagy after being treated with 20(S)-GRh2 in AML and CML. In this study, we explored the effect of 20(S)-GRh2 on the AML and CML (U937 and K562). Fluorescence microscopy, CCK-8, Quantitative realtime PCR, Western blot, transmission electron microscopy (TEM), and flow cytometric analysis were used to detect the occurrence of cell proliferation inhibition, apoptosis, and autophagy. By using the above methods, it was determined that apoptosis induced by 20(S)-GRh2 was more obvious in K562 than U937 cells and 20(S)-GRh2 could generate autophagy in K562 and U937 cells. When pretreated by a specific inhibitor of autophagy, (3-methyladenine), the 20(S)-GRh2-induced apoptosis was enhanced, which indicated that 20(S)-GRh2-induced autophagy may protect U937 and K562 cells from undergoing apoptotic cell death. On the other hand, pretreated by an apoptosis suppressor (Z-VAD-FMK), it greatly induced the autophagy and partially prevented 20(S)-GRh2 induced apoptosis. This phenomenon indicated that 20(S)-GRh2-induced autophagy may serve as a survival mechanism and apoptosis and autophagy could act as partners to induce cell death in a cooperative manner. These findings may provide a rationale for future clinical application by using 20(S)-GRh2 combined autophagy inhibitors for AML and CML.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ginsenósidos/farmacología , Proliferación Celular , Humanos , Células K562 , Especies Reactivas de Oxígeno/metabolismo , Células U937
19.
Oncol Lett ; 15(5): 6291-6296, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29731847

RESUMEN

Acute promyelocytic leukemia is frequently associated with dizziness, fever, nausea, hematochezia and anemia. Blue light, or light with wavelengths of 400-480 nm, transmits high levels of energy. The aim of the present study was to determine the pro-apoptotic effects of blue light (wavelength, 456 nm; radiation power, 0.25 mW/cm2) and the underlying mechanisms in a human promyelocytic leukemia cell line (HL60). Blue light reduced the viability and enhanced the mortality of HL60 cells in a time-dependent manner. Exposure to blue light for 24 h caused depolarization of the mitochondrial membrane potential and the overproduction of reactive oxygen species in HL60 cells. In a nude mouse model, 9-day exposure to blue light markedly suppressed the growth of HL60-xenografted tumors; however, it had no effect on hepatic and renal tissues. In addition, blue light abrogated the expression of B-cell lymphoma (Bcl)-2 and Bcl extra-long, while enhancing the levels of Bcl-2-associated X protein, cytochrome c, and cleaved caspases-3 and -9 in tumor tissues. The results suggested that the pro-apoptotic effects of blue light in human promyelocytic leukemia cells may be associated with the mitochondrial apoptosis signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA