Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ultrason Sonochem ; 74: 105581, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33975188

RESUMEN

In this paper, the ultrasonic-assisted desilication technique was reported as an attractive and efficient way for the preparation of hierarchical zeolites with MFI structure type. The prepared materials were used as active catalysts for the dehydration of ethanol into diethyl ether and ethylene. For all catalysts, the selectivity to diethyl ether was ca 95% or higher up to 210 °C, with catalytic activity in the range of 40-68%. In case of desilicated zeolites, at 270-290 °C, the conversion of ethanol was full with selectivity to ethylene ca 80%. MFI-type commercial zeolite was treated with a sodium and/or tetrabutylammonium hydroxide aqueous solutions (NaOH or NaOH/TBAOH) for 30 min. In the case of the application of ultrasounds, a QSonica Q700 sonicator (60 W and 20 kHz) equipped with a "1" diameter horn was used. In all cases, desilication was performed in an ice bath in order to keep the procedure conditions at low temperature. It was indicated that the use of ultrasounds during desilication procedure caused higher extraction of silicon and aluminum, which was connected with an elevated mesoporosity in relation to the samples modified in the absence of ultrasounds. Ultrasonic-assisted treatment of MFI-type zeolite caused also an apparent formation of numerous holes inside zeolite grains, resembling the look of "swiss cheese". Furthermore, it was indicated that the samples prepared using ultrasonic irradiation exhibited enhanced catalytic properties in the dehydration of ethanol. For instance, MFI-type zeolite treated with NaOH/TBAOH alkaline mixture containing 10 mol% of TBAOH in the presence of ultrasounds (M-10 s) demonstrated higher both conversion of ethanol (59% vs. 47%) and selectivity to diethyl ether (95% vs. 93%) in comparison with zeolite modified conventionally (M-10c). The best catalyst was zeolite ultrasonically desilicated with NaOH/TBAOH solution of 70 mol% of TBAOH (M-70s). Generally, this catalyst indicated the highest conversion of ethanol, very high selectivity to diethyl ether (94-100%) at 150-210  °C and the highest selectivity to ethylene among investigated catalysts (21%, 66% and 84%) at 230  °C, 250 oC and 270  °C.

2.
Acta Biochim Pol ; 43(4): 693-700, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-9104506

RESUMEN

Calpains--non-lysosomal intracellular calcium-activated neutral proteinases, form a family consisting of several distinct members. Two of the isoenzymes: mu (calpain I) and m (calpain II) responded differently to the injury during complete regeneration of Extensor digitorum longus (EDL) muscle and partial regeneration of Soleus muscle. In the crushed EDL the level of m-calpain on the 3rd and 7th day of regeneration was higher than in non-operated muscles, whereas the activity of this calpain in injured Soleus decreased. The level of mu-calpain in EDL oscillated irregularly during regeneration whereas in Soleus of both injured and contralateral muscles its level rapidly rose. Our results support the hypothesis that m-calpain is involved in the process of fusion of myogenic cells whereas mu-calpain plays a significant but indirect role in muscle regeneration.


Asunto(s)
Calpaína/metabolismo , Isoenzimas/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Animales , Ratas , Ratas Wistar
3.
Int J Cell Biol ; 2009: 659372, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20111627

RESUMEN

When injured by crushing, the repair of the slow-twitch soleus rat muscle, unlike the fast-twitch EDL, is associated with fibrosis. As TGFbeta1, whose activity can be controlled by glycosaminoglycans (GAG), plays a major role in fibrosis, we hypothesized that levels of TGFbeta1 and GAG contents could account for this differential quality of regeneration. Here we show that the regeneration of the soleus was accompanied by elevated and more sustained TGFbeta1 level than in the EDL. Neutralization of TGFbeta1 effects by antibodies to TGFbeta1 or its receptor TGFbeta-R1 improved muscle repair, especially of the soleus muscle, increased in vitro growth of myoblasts, and accelerated their differentiation. These processes were accompanied by alterations of GAG contents. These results indicate that the control of TGFbeta1 activity is important to improve regeneration of injured muscle and accelerate myoblast differentiation, in part through changes in GAG composition of muscle cell environment.

4.
J Cell Physiol ; 205(2): 237-45, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15887234

RESUMEN

Glycosaminoglycans (GAG) are classes of molecules that play an important role in cellular processes. The use of GAG mimetics called regenerating agent (RGTA) represents a tool to investigate the effect of GAG moiety on cellular behavior. A first member of the RGTA family (RG1192), a dextran polymers with defined amounts of sulfate, carboxymethyl, as well as hydrophobic groups (benzylamide), was shown to stimulate skeletal muscle repair after damage and myoblast differentiation. To obtain a comprehensive insight into the mechanism of action of GAG mimetics, we investigated the effect on myoblast differentiation of a novel RGTA, named RGD120, which was devoid of hydrophobic substitution and had ionic charge similar to heparin. Myoblasts isolated from adult rat skeletal muscles and grown in primary cultures were used in this study. We found that chronic treatment with RGD120 increased the growth of adult myoblasts and induced their precocious fusion into myotubes in vitro. It also partially overcame the inhibitory effect of the calpain inhibitor N-acetyl-leu-leu-norleucinal (ALLN) on these events. Western blot and zymography analyses revealed that milli calpain was slightly increased by RGD120 chronic treatment. In addition, using fluorescent probes (Indo-1 and Boc-leu-met-MAC), we demonstrated that RGD120 added to prefusing myoblast cultures accelerates myoblast fusion into myotubes, induced an increase of cytosolic free calcium concentration, and concomitantly an increase of intracellular calpain protease activity. Altogether, these results suggested that the efficiency of RGD120 in stimulating myogenesis might be in part explained through its effect on calcium mobilization as well as on the calpain amount and activity.


Asunto(s)
Calcio/metabolismo , Calpaína/metabolismo , Fusión Celular , Glicosaminoglicanos/farmacología , Músculo Esquelético/citología , Mioblastos Esqueléticos/efectos de los fármacos , Células Satélite del Músculo Esquelético/citología , Animales , Western Blotting , Calpaína/análisis , Diferenciación Celular , Extractos Celulares/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fluorescencia , Glicosaminoglicanos/química , Inmunohistoquímica , Masculino , Imitación Molecular , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/fisiología , Ratas , Ratas Wistar , Espectrometría de Fluorescencia , Factores de Tiempo
5.
J Cell Physiol ; 188(2): 178-87, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11424084

RESUMEN

Skeletal muscle regenerates after injury. Tissue remodelling, which takes place during muscle regeneration, is a complex process involving proteolytic enzymes. It is inferred that micro and milli calpains are involved in the protein turnover and structural adaptation associated with muscle myolysis and reconstruction. Using a whole-crush injured skeletal muscle, we previously have shown that in vivo muscle treatment with synthetic heparan sulfate mimetics, called RGTAs (for ReGeneraTing Agents), greatly accelerates and improves muscle regeneration after crushing. This effect was particularly striking in the case of the slow muscle Soleus that otherwise would be atrophied. Therefore, we used this regeneration model to study milli and micro calpain expressions in the regenerating Soleus muscle and to address the question of a possible effect of RGTAs treatment on calpain levels. Micro and milli calpain contents increased by about five times to culminate at days 7 and 14 after crushing respectively, thus during the phases of fibre reconstruction and reinnervation. After 64 days of regeneration, muscles still displayed higher levels of both calpains than an intact uninjured muscle. Milli calpain detected by immunocytochemistry was shown in the cytoplasm whereas micro calpain was in both nuclei and cytoplasm in small myofibres but appeared almost exclusively in nuclei of more mature fibres. Interestingly, the treatment of muscles with RGTA highly reduced the increase of both milli and micro calpain contents in Soleus regenerating muscles. These results suggest that the improvement of muscle regeneration induced by RGTA may be partly mediated by minimising the consequences of calpain activity.


Asunto(s)
Calpaína/metabolismo , Dextranos/farmacología , Heparitina Sulfato/análogos & derivados , Músculo Esquelético/fisiología , Regeneración/efectos de los fármacos , Animales , Especificidad de Anticuerpos , Calpaína/análisis , Calpaína/inmunología , Activación Enzimática/efectos de los fármacos , Masculino , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/efectos de los fármacos , Ratas , Ratas Wistar , Regeneración/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA