Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526660

RESUMEN

Human mitochondria contain their own genome, mitochondrial DNA, that is expressed in the mitochondrial matrix. This genome encodes 13 vital polypeptides that are components of the multisubunit complexes that couple oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane that houses these complexes comprises the inner boundary membrane that runs parallel to the outer membrane, infoldings that form the cristae membranes, and the cristae junctions that separate the two. It is in these cristae membranes that the OXPHOS complexes have been shown to reside in various species. The majority of the OXPHOS subunits are nuclear-encoded and must therefore be imported from the cytosol through the outer membrane at contact sites with the inner boundary membrane. As the mitochondrially encoded components are also integral members of these complexes, where does protein synthesis occur? As transcription, mRNA processing, maturation, and at least part of the mitoribosome assembly process occur at the nucleoid and the spatially juxtaposed mitochondrial RNA granules, is protein synthesis also performed at the RNA granules close to these entities, or does it occur distal to these sites? We have adapted a click chemistry-based method coupled with stimulated emission depletion nanoscopy to address these questions. We report that, in human cells in culture, within the limits of our methodology, the majority of mitochondrial protein synthesis is detected at the cristae membranes and is spatially separated from the sites of RNA processing and maturation.


Asunto(s)
Compartimento Celular , Imagenología Tridimensional , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas , Alquinos , Células Cultivadas , ADN Mitocondrial/genética , Glicina/análogos & derivados , Humanos , Cinética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , ARN Mitocondrial/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 117(40): 24974-24985, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958637

RESUMEN

The antigen-presenting molecule MR1 (MHC class I-related protein 1) presents metabolite antigens derived from microbial vitamin B2 synthesis to activate mucosal-associated invariant T (MAIT) cells. Key aspects of this evolutionarily conserved pathway remain uncharacterized, including where MR1 acquires ligands and what accessory proteins assist ligand binding. We answer these questions by using a fluorophore-labeled stable MR1 antigen analog, a conformation-specific MR1 mAb, proteomic analysis, and a genome-wide CRISPR/Cas9 library screen. We show that the endoplasmic reticulum (ER) contains a pool of two unliganded MR1 conformers stabilized via interactions with chaperones tapasin and tapasin-related protein. This pool is the primary source of MR1 molecules for the presentation of exogenous metabolite antigens to MAIT cells. Deletion of these chaperones reduces the ER-resident MR1 pool and hampers antigen presentation and MAIT cell activation. The MR1 antigen-presentation pathway thus co-opts ER chaperones to fulfill its unique ability to present exogenous metabolite antigens captured within the ER.


Asunto(s)
Retículo Endoplásmico/genética , Antígenos de Histocompatibilidad Clase I/genética , Metaboloma/genética , Antígenos de Histocompatibilidad Menor/genética , Proteómica , Presentación de Antígeno/genética , Antígenos/genética , Antígenos/inmunología , Sistemas CRISPR-Cas/genética , Humanos , Ligandos , Activación de Linfocitos/genética , Proteínas de Transporte de Membrana/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Riboflavina/genética
3.
Biology (Basel) ; 10(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681149

RESUMEN

Human mitochondria are highly dynamic organelles, fusing and budding to maintain reticular networks throughout many cell types. Although extending to the extremities of the cell, the majority of the network is concentrated around the nucleus in most of the commonly cultured cell lines. This organelle harbours its own genome, mtDNA, with a different gene content to the nucleus, but the expression of which is critical for maintaining oxidative phosphorylation. Recent advances in click chemistry have allowed us to visualise sites of mitochondrial protein synthesis in intact cultured cells. We show that the majority of translation occurs in the peri-nuclear region of the network. Further analysis reveals that whilst there is a slight peri-nuclear enrichment in the levels of mitoribosomal protein and mitochondrial rRNA, it is not sufficient to explain this substantial heterogeneity in the distribution of translation. Finally, we also show that in contrast, a mitochondrial mRNA does not show such a distinct gradient in distribution. These data suggest that the relative lack of translation in the peripheral mitochondrial network is not due to an absence of mitoribosomes or an insufficient supply of the mt-mRNA transcripts.

4.
Methods Mol Biol ; 2192: 159-181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230773

RESUMEN

Human mitochondria contain their own DNA (mtDNA) that encodes 13 proteins all of which are core subunits of oxidative phosphorylation (OXPHOS) complexes. To form functional complexes, these 13 components need to be correctly assembled with approximately 70 nuclear-encoded subunits that are imported following synthesis in the cytosol. How this complicated coordinated translation and assembly is choreographed is still not clear. Methods are being developed to determine whether all members of a particular complex are translated in close proximity, whether protein synthesis is clustered in submitochondrial factories, whether these align with incoming polypeptides, and if there is evidence for co-translational translation that is regulated and limited by the interaction of the incoming proteins with synthesis of their mtDNA-encoded partners. Two methods are described in this chapter to visualize the distribution of mitochondrial ribosomal RNAs in conjunction with newly synthesized mitochondrial proteins. The first combines RNA Fluorescent In Situ Hybridization (FISH) and super-resolution immunocytochemistry to pinpoint mitochondrial ribosomal RNA. The second localizes nascent translation within the mitochondrial network through non-canonical amino acid labeling, click chemistry and fluorescent microscopy.


Asunto(s)
Química Clic/métodos , Inmunohistoquímica/métodos , Hibridación Fluorescente in Situ/métodos , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , ARN Mitocondrial/metabolismo , ARN Ribosómico/metabolismo , Aminoácidos/química , Línea Celular Tumoral , ADN Mitocondrial/genética , Humanos , Microscopía Fluorescente/métodos , Fosforilación Oxidativa , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA