Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 180(5): 984-1001.e22, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109414

RESUMEN

Aging causes a functional decline in tissues throughout the body that may be delayed by caloric restriction (CR). However, the cellular profiles and signatures of aging, as well as those ameliorated by CR, remain unclear. Here, we built comprehensive single-cell and single-nucleus transcriptomic atlases across various rat tissues undergoing aging and CR. CR attenuated aging-related changes in cell type composition, gene expression, and core transcriptional regulatory networks. Immune cells were increased during aging, and CR favorably reversed the aging-disturbed immune ecosystem. Computational prediction revealed that the abnormal cell-cell communication patterns observed during aging, including the excessive proinflammatory ligand-receptor interplay, were reversed by CR. Our work provides multi-tissue single-cell transcriptional landscapes associated with aging and CR in a mammal, enhances our understanding of the robustness of CR as a geroprotective intervention, and uncovers how metabolic intervention can act upon the immune system to modify the process of aging.


Asunto(s)
Envejecimiento/genética , Restricción Calórica , Sistema Inmunológico/metabolismo , Transcriptoma/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Reprogramación Celular/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Ratas , Análisis de la Célula Individual
2.
Dev Cell ; 56(3): 383-397.e8, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33238152

RESUMEN

Skin undergoes constant self-renewal, and its functional decline is a visible consequence of aging. Understanding human skin aging requires in-depth knowledge of the molecular and functional properties of various skin cell types. We performed single-cell RNA sequencing of human eyelid skin from healthy individuals across different ages and identified eleven canonical cell types, as well as six subpopulations of basal cells. Further analysis revealed progressive accumulation of photoaging-related changes and increased chronic inflammation with age. Transcriptional factors involved in the developmental process underwent early-onset decline during aging. Furthermore, inhibition of key transcription factors HES1 in fibroblasts and KLF6 in keratinocytes not only compromised cell proliferation, but also increased inflammation and cellular senescence during aging. Lastly, we found that genetic activation of HES1 or pharmacological treatment with quercetin alleviated cellular senescence of dermal fibroblasts. These findings provide a single-cell molecular framework of human skin aging, providing a rich resource for developing therapeutic strategies against aging-related skin disorders.


Asunto(s)
Análisis de la Célula Individual , Envejecimiento de la Piel/genética , Transcriptoma/genética , Adolescente , Adulto , Anciano , Dermis/citología , Epidermis/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Persona de Mediana Edad , Factor de Transcripción HES-1/metabolismo , Adulto Joven
3.
J Mol Endocrinol ; 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30400066

RESUMEN

Hypoxia-inducible factor-1 (HIF1) is a critical transcription factor involved in cell response to hypoxia. Under physiological conditions, its a subunit is rapidly degraded in most tissues except testes. HIF1 is stably expressed in Leydig cells, which are the main source of testosterone for male, and might bind to the promoter region of steroidogenic acute regulatory protein (Star), which is necessary for the testosterone synthesis, according to software analysis. This study aims to identify the binding sites of HIF1 on Star promoter and its transcriptional regulation of Star to affect testosterone synthesis. Testosterone level and steroid synthesis-related proteins were determined in male Balb/C mice exposed to hypoxia (8% O2). While HIF1 was upregulated, the testosterone level was significantly decreased. This was further confirmed by in vitro experiments with rat primary Leydig cells or TM3 cells exposed to hypoxia (1% O2), CoCl2 or DFX to raise HIF1. The decline of testosterone was reversed by pregnenolone but not cAMP, indicating the cholesterol transport disorder as the main cause. In agreement, StAR expression level was decreased in response to HIF1, while 3b-hydroxysteroid dehydrogenase, 17b-hydroxysteroid dehydrogenase and p450scc did not exhibit significant changes. By ChIP, EMSA supershift and dual-luciferase reporter assays, HIF1 was found to bind to the Star promoter region and repress the expression of StAR. Mutation assays identified three HIF1-binding sites on mouse Star promoter. These findings indicate that HIF1 represses Star transcription through directly binding to the Star promoter at -2082/-2078, -2064/-2060 and -1910/-1906, leading to the negative regulation of testosterone synthesis.

4.
Oncotarget ; 8(10): 16401-16413, 2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-28146428

RESUMEN

Male fertility disorders play a key role in half of all infertility cases. Reduction in testosterone induced by hypoxia might cause diseases in reproductive system and other organs. Hypoxic exposure caused a significant decrease of NRF1. Software analysis reported that the promoter region of steroidogenic acute regulatory protein (StAR) contained NRF1 binding sites, indicating NRF1 promoted testicular steroidogenesis. The purpose of this study is to determine NRF1 is involved in testosterone synthesis; and under hypoxia, the decrease of testosterone synthesis is caused by lower expression of NRF1. We designed both in vivo and in vitro experiments. Under hypoxia, the expressions of NRF1 in Leydig cells and testosterone level were significantly decreased both in vivo and in vitro. Overexpression and interference NRF1 could induced StAR and testosterone increased and decreased respectively. ChIP results confirmed the binding of NRF1 to StAR promoter region. In conclusion, decline of NRF1 expression downregulated the level of StAR, which ultimately resulted in a reduction in testosterone synthesis.


Asunto(s)
Hipoxia/metabolismo , Células Intersticiales del Testículo/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Fosfoproteínas/biosíntesis , Testosterona/biosíntesis , Animales , Hipoxia de la Célula/fisiología , Regulación hacia Abajo , Humanos , Hipoxia/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Factor Nuclear 1 de Respiración/biosíntesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Regiones Promotoras Genéticas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA