RESUMEN
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a leading cause of kidney failure and is associated with substantial morbidity and mortality. Interstitial inflammation is attributed to the action of infiltrating macrophages and is a feature thought to aggravate disease progression. Here, we investigated the therapeutic potential of the anti-inflammatory IL37b cytokine as a treatment for ADPKD using genetic mouse models, demonstrating that transgenic expression of human IL37b reduced collecting duct cyst burden in both early and adult-onset ADPKD rodent models. Moreover, injection of recombinant human IL37b could also reduce cyst burden in early onset ADPKD mice, an observation not associated with increased macrophage number at early stages of cyst formation. Interestingly, transgenic IL37b expression also did not alter macrophage numbers in advanced disease. Whole kidney RNA-seq highlighted an IL37b-mediated upregulation of the interferon signaling pathway and single-cell RNA-seq established that these changes originate at least partly from kidney resident macrophages. We further found that blocking type I interferon signaling in mice expressing IL37b resulted in increased cyst number, confirming this as an important pathway by which IL37b exerts its beneficial effects. Thus, our studies show that IL37b promotes interferon signaling in kidney resident macrophages which suppresses cyst initiation, identifying this protein as a potential therapy for ADPKD.
Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Ratones , Humanos , Animales , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Inflamación/genética , Inflamación/complicaciones , Riñón/metabolismo , Quistes/complicaciones , Interleucinas , InterferonesRESUMEN
Aurora Kinase A (AURKA) promotes cell proliferation and is overexpressed in different types of polycystic kidney disease (PKD). To understand AURKA's role in regulating renal cyst development we conditionally deleted the gene in mouse models of Autosomal Dominant PKD (ADPKD) and Joubert Syndrome, caused by Polycystin 1 (Pkd1) and Inositol polyphosphate-5-phosphatase E (Inpp5e) mutations respectively. We show that while Aurka is dispensable for collecting duct development and homeostasis, its deletion prevents cyst formation in both disease models. Cross-comparison of transcriptional changes implicated AKT signaling in cyst prevention and we show that (i) AURKA and AKT physically interact, (ii) AURKA regulates AKT activity in a kinase-independent manner and (iii) inhibition of AKT can reduce disease severity. AKT activation also regulates Aurka expression, creating a feed-forward loop driving renal cystogenesis. We find that the AURKA kinase inhibitor Alisertib stabilises the AURKA protein, agonizing its cystogenic functions. These studies identify AURKA as a master regulator of renal cyst development in different types of PKD, functioning in-part via AKT.
Asunto(s)
Aurora Quinasa A , Quistes , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Ratones , Aurora Quinasa A/genética , Monoéster Fosfórico Hidrolasas , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/prevención & control , Proteínas Proto-Oncogénicas c-akt/genéticaRESUMEN
Mutations in the lipid transport protein ABCA12 cause the life-threatening skin condition harlequin ichthyosis (HI), which is characterized by the loss of skin barrier function, inflammation, and dehydration. Inflammatory responses in HI increase disease severity by impairing keratinocyte differentiation, suggesting amelioration of this phenotype as a possible therapy for the condition. Existing treatments for HI are based around the use of retinoids, but their value in treating patients during the neonatal period has been questioned relative to other improved management regimens, and their long-term use is associated with side effects. We have developed a conditional mouse model to demonstrate that topical application of the aminosalicylic acid derivatives 5ASA or 4ASA considerably improves HI keratinocyte differentiation without the undesirable side effects of the retinoid acitretin and salicylic acid (aspirin). Analysis of changes in gene expression shows that 4ASA in particular elicits compensatory upregulation of a large family of barrier function-related genes, many of which are associated with other ichthyoses, identifying this compound as a lead candidate for developing topical treatments for HI.