Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurochem ; 162(6): 501-513, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35797221

RESUMEN

Glioblastoma is the most common and malignant type of primary brain tumor. Previous studies have shown that alterations in centrosome amplification and its components are frequently found in treatment-resistant tumors and may be associated with tumor progression. A centrosome protein essential for centrosome biogenesis is the centromere protein J (CENPJ), known to control the proliferation of neural progenitors and hepatocarcinoma cells, and also neuronal migration. However, it remains unknown the role of CENPJ in glioblastoma. Here we show that CENPJ is overexpressed in human glioblastoma cell lines in comparison to human astrocytes. Using bioinformatics analysis, we find that high Cenpj expression is associated with poor prognosis in glioma patients. Examining Cenpj loss of function in glioblastoma by siRNA transfection, we find impairments in cell proliferation and migration. Using a Cenpj mutant version with the deleted PN2-3 or TCP domain, we found that a conserved PN2-3 region is required for glioblastoma migration. Moreover, Cenpj downregulation modulates glioblastoma morphology resulting in microtubules stabilization and actin filaments depolymerization. Altogether, our findings indicate that CENPJ controls relevant aspects of glioblastoma progression and might be a target for therapeutic intervention and a biomarker for glioma malignancy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Centrómero/metabolismo , Centrómero/patología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos
2.
Cereb Cortex Commun ; 2(1): tgaa090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34296146

RESUMEN

Deafferentation is an important determinant of plastic changes in the CNS, which consists of a loss of inputs from the body periphery or from the CNS itself. Although cortical reorganization has been well documented, white matter plasticity was less explored. Our goal was to investigate microstructural interhemispheric connectivity changes in early and late amputated rats. For that purpose, we employed diffusion-weighted magnetic resonance imaging, as well as Western blotting, immunohistochemistry, and electron microscopy of sections of the white matter tracts to analyze the microstructural changes in the corticospinal tract and in the corpus callosum (CC) sector that contains somatosensory fibers integrating cortical areas representing the forelimbs and compare differences in rats undergoing forelimb amputation as neonates, with those amputated as adults. Results showed that early amputation induced decreased fractional anisotropy values and reduction of total myelin amount in the cerebral peduncle contralateral to the amputation. Both early and late forelimb amputations induced decreased myelination of callosal fibers. While early amputation affected myelination of thinner axons, late amputation disrupted axons of all calibers. Since the CC provides a modulation of inhibition and excitation between the hemispheres, we suggest that the demyelination observed among callosal fibers may misbalance this modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA